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Framework: Private Online Learning
Online Learning is a framework for sequential
decision making that offers distribution-free learn-
ing guarantees. Consequently, it is well suited
to dynamic and adversarial environments where
real-time learning from changing data is crucial.

Formal Setup: On each round t = 1, 2, . . . T

• The learner predicts xt ∈ X ⊆ RN (convex) .

• The adversary chooses a loss vector lt ∈ Y .

• The learner suffers 〈lt, xt〉 and observes lt in
the full-information setting (and, in contrast,
only 〈lt, xt〉 under bandit feedback).

Regret = E
[ T∑

t=1

〈lt, xt〉︸ ︷︷ ︸
Loss of the learner

− min
x∈X

T∑
t=1

〈lt, x〉︸ ︷︷ ︸
Loss of the best fixed decision

]

O(
√
T ) Regret =⇒ O

(
1

ε2

)
Sample Complexity

Privacy Guarantee: A randomized online learning
algorithmA is ε-differentially private if whenever

L = (l1, . . . , lt, . . . lT )
A−→ (x1, . . . xT )

L′ = (l1, . . . , l
′
t, . . . lT )︸ ︷︷ ︸

Input

A−→ (x′1, . . . x
′
T )︸ ︷︷ ︸

Output

,

for any possible set S ⊆ X T of output sequences

P( (x1, . . . xT )︸ ︷︷ ︸
Output ofA on L

∈ S) ≤ eεP( (x′1, . . . x
′
T )︸ ︷︷ ︸

Output ofA on L′

∈ S).

Price = limT→∞

(
ε-DP Regret(T )

Non-private Regret(T )
− 1
)

Illustration: The Promise of Privacy

Loss Vector (in OL) ≡ Feature Vector + Reward (in Sup L)

Our Contributions

Full-Information Setting
Meta-Theorem: Any regularization-based low-
regret algorithm can be adapted to achieve

Regretε-DP = RegretNon-private +O
(

log2 T
ε

)
while ensuring ε-differential privacy.

I Privacy is Free! as long as ε ≥ 1√
T

.

I Previous best[JKT12,ST13] scale as O
(√

T
ε

)
.

I Adapts to the Geometry of the problem.
– Optimal dependence on N .

Bandit Feedback
Meta-Theorem: Any low-regret bandit algorithm
can be adapted to achieve

Regretε-DP = O
(RegretNon-private

ε

)
while ensuring ε-differential privacy.

I Optimal O(
√
T ) dependence on #rounds.

I Previous best[ST13] scale as O(T
2
3 ).

I Works for general convex sets.

Full-Information Algorithm

FTRL Template
1 Initialize an empty binary tree B to compute

differentially private estimates of
∑t

i=1 li.
2 for t = 1 to T do
3 xt = argminx∈X (η〈x, L̃t−1〉+R(x)).

L̃t−1 ≈
∑t

i=1 li+noise

4 Observe lt, and suffer a loss of 〈lt, xt〉.
5 (L̃t, B)← TreeBasedAgg(lt, B).

Tree-based Aggregation
Input: A sequence of vectors (l1, . . . lT ).
Output: ε-DP estimates L̃t of sums

(∑t
i=1 li

)
.

Utility: |L̃t −
∑T

i=1 li| ≈
log2 T

ε . [DNPR10, JKT12]

Bandit Algorithm

Reduction to Non-private Setting
1 Require: Bandit Algorithm A.

for t = 1 to T do
2 Receive xt from A and output xt.
3 Receive a loss value 〈lt, xt〉 from the

adversary.
4 Sample Zt ∼ Lap

(
1
ε

)
.

5 Forward 〈lt, xt〉+ 〈Zt, xt〉 as input to A.

Key Points: Regret Analysis

Full-Information Setting
I The Tree-based Aggregation scheme adds ≈

log2 T
ε noise on the true cumulative sums.

I Treating these perturbations as worst-case
loss vectors leads to O

(√
T log2 T

ε

)
regret.

I (FTPL Analysis) Once these perturbations
are made identical in distribution, the regret
of the proposed algorithm is the same as that
of FTRL algorithm injecting all noise at t = 0.

Bandit Feedback
I Since bandit algorithms utilize importance

sampling, adding a perturbation of Zt dras-
tically reduces the stability.

– A careful analysis leads toO(T
2
3 ) regret.

I A perturbation of 〈Zt, xt〉 permits one to pre-
tend the magnitude of loss vector is ≈ 1

ε .

See ↑ for more details.

Summary of Our Results

Full-Information Setting
Previous Best Our Regret Bound Non-private

Expert Advice Õ
(√

T logN
ε

)
[DR14] O

(√
T logN + N logN log2 T

ε

)
O(
√
T logN)

Sphere Õ
(√

NT
ε

)
[ST13] O

(√
T + N log2 T

ε

)
O(
√
T )

Cube Õ
(√

NT
ε

)
[ST13] O

(√
NT + N log2 T

ε

)
O(
√
NT )

General OLO* Õ
(√

T
ε

)
[ST13] O

(√
T + log2 T

ε

)
O(
√
T )

Bandit Feedback
Previous Best Our Regret Bound Non-private

Multi-armed Bandits Õ
(

NT
2
3

ε

)
[ST13] Õ

(√
TN logN

ε

)
O(
√
NT )

Bandit Linear Optimization* Õ
(

T
2
3

ε

)
[ST13] Õ

(√
T
ε

)
O(
√
T )
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