

TOPICS

* Standerdiaction of $P_{s}++$
* Geometry of UPs
* Atlgelora of LPS
* Minima /LP Duality
* Simplex
* Ellipsoid
*? Iuterior-point
* Regret minimization
* Eero-sun games
* ? Optimal Transport
* ? Linear Integration

Headings
Suggested Exercises
Correctucans

EXTENSIONS
GRADING
45%
final exam
$15 \% \times 3$ Assignments 10% Participation
policies etc.

- Doit lur tentloocks.
- Prereq: Linear Algebra $\left(\operatorname{det} A, A^{-1}\right.$, mark-muliti.
Single-nar calculus
- Me late sulenissicens. ONLY ASSIGNMENTS
- Can discuss; verite ley self.

Front page of NYT twice
BREAKTHROUGH IN PROBLEM SOLVING
https://www.nytimes.com/1984/11/19/us/breakthrough-in-problem-solving.html

+ Karmakar (28 years old, recent UCB PhD) features twice in NYT in '84.
+ This was a poly-time interior point method. We'll study this.
+ "It has also set off a deluge of inquiries from brokerage houses, oil companies and airlines, industries with millions of dollars at stake in problems known as linear programming."
+ "This is a path-breaking result," said Dr. Ronald L. Graham, director of mathematical sciences for Bell Labs in Murray Hill, N.J. ''Science has its moments of great progress, and this may well be one of them.'
+K talks with American Airlines: How much fuel to carry? Where to fuel?
+ Exon's research head says "studies underway".
+ Dantzig is cautious; he was partial to the simplex method.

A Soviet Discovery Rocks World of Mathematics
https://www.nytimes.com/1979/11/07/archives/a-soviet-discovery-rocks-world-of-mathematics-russians-surprise.html

+ Khachiyan (late 20s?) features twice in NYT in '79.
+ "applicable in weather prediction, complicated industrial processes, petroleum refining, the scheduling of workers at large factories, secret codes and many other things."
+ This was the ellipsoid algorithm; also poly time. We'll study this.

Karan: Today, such press seems parallel to the coverage ML/deep learning gets.

George Dantzig's Story

+ From WWI/WWII era (distributed) logistics, productions problems. Questions around: what to do/when to do to arrive at some state/ achieve some objective. Semantics: programming ~ planning.
+ Dantzig (USAF) 1947 formulates/recognizes the general linear programming problem as a possible compromise between solvable and interesting problem classes. Also, proposes the simplex algorithm.
+ His claim (in his text): previous work did not have an objective function, i.e. only posed feasibility problems. An example is Motzkin's 1936 thesis which cites 42 pages, none considering an objective.
+ Some LP special cases (Koopmans, Leontif, Kantorvich) would win Nobel in Econ.
+ Meets von Neumann to discuss. Von Neumann is annoyed, "get to the point!". On seeing the problem, delivers an impromptu 1.5 hour lecture to Dantzig and describes both LP duality (including Farkas's Lemma) and an early interior point method. What triggered this?

Von Neumann's Story

+ See https://wwnorton.com/books/the-man-from-the-future. A prodigy, and reputed as a deep mathematician who interfaces with applied problems/worldly affairs, e.g., consults on Manhattan project.
+ Early contributions include a resolution to fundamental inconsistencies in mathematics (Russel's paradox: S is the set of all sets which are not members of themselves. Is S in S ? Others resolved it simultaneously by better means.), and rigorous unification of wave equation and matrix mechanics in QM (earlier heuristic argument by Dirac using delta functions).
+ In 1944, a book with an Economist Morgenstern on The Theory of Games and Economic Behavior.
+ Minimax duality in 2-person zero-sum games is same as LP duality. Today, called von Neumann duality. But, it is von Neumann's?

Truer Origins of Duality

+ Monge proposes a question about the transportation problem in 1700's, used to model moving ores from mines to factories at minimum cost.
+ Kantorvich (1939) solves it, constructs the dual. Transportation is as general as LP. Kantorvich largely ignored in Russia. We will study this too.
+ Today, applications in PDEs, convex geometry, dynamical systems, probability. Cedric Villani (later member of French Parliament) wins a Fields Medal; see his book here https://cedricvillani.org/sites/dev/files/old_images/2012/08/.preprint-1.pdf.

Linear programming－a class of aptimization perdeblems that are useful and simultaneously tractable．

What is LINEAR？
Do ${ }^{n}$ A function $f: X \rightarrow \mathbb{R}$ ，where $X \subseteq$ sere nestor spence V ，is LINEAR if
（a）$f(x+y)=f(x)+f(y)$ $\forall x, y \in \mathcal{R}$ ．
（b）$f(\alpha, x)=\alpha f(x) \quad \forall x \in \mathcal{X}, \alpha \in \mathbb{R}$ ．
Proposition of $V=\mathbb{R}^{n}$ ，then for any $X \subseteq V$ and LNEEAR $f: X \rightarrow \mathbb{R}$ ， $\exists c \in \mathbb{R}^{n}$ such that $f(x)=c^{\top} x \quad \forall x \in X$ ．
Furthermore，if $X=\mathbb{R}^{n}$ ，then the choice of such $c \in \mathbb{R}^{n}$ given a fined＇f＇is unique．
comment o－$x \rightarrow C^{\top} x$ is of course linear．The interesting hit is that any linear funntican on $X \subseteq \mathbb{R}^{n}$ can le written this way．Also this representation may not he unique if X is a subset of a proper subspace of \mathbb{R}^{n} ，i．e．，is lomer－dionensicoual．
（E）X）Try to see why！This does not impugn existence．
Proof Sketch：We will only consider the case when $X=\mathbb{R}^{n}$ ．
（En）Cheek the general case $V=\mathbb{R}^{n}$ an your owns． Any $x \in \mathbb{R}^{n}$ can le written as $x=\sum_{i=1}^{n} x_{i} e_{i,}$
 Now，$f(x)=\sum_{i=1}^{n} f\left(e_{i}\right) x_{i}$ ．
Heme，$c=\left[f\left(l_{1}\right) \cdots . . f\left(l_{n}\right)\right]^{\top}$ patisifiers said claim．
Motivating Defortion of LPS
ATTEMPT 1：max $C^{\top} x$
sulyectte $x \in \mathbb{R}^{n}$ is either 0 when $c=0$ or $+\infty$ when $C \neq 0$ ．
Cor sub h that $/ s-t$ ．）
not interesting／useful．
ATTEMPT 2：Impose constrerinto＜WILL RETURN
it fee w definitions
（1）A set S is CLOSED if it contains all i有 limit points，i．e．，

(2) A set S is BOUPDED if $\exists C \in \mathbb{R}$ such that $\forall x \in S,\|x\| \leq C$. choice of norm (in finite-dimensional spaces) is net crucial / is immaterial te o this definition.
(3) S is COMPACT if it is CLDSED and BOUNDED.
(4) At function $f: X \rightarrow Y$ is CONTINDOUS if for any $x_{1}, x_{2}, \ldots \in X$ such that $\lim _{n \rightarrow \infty} x_{n}$ exists and is in x, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)$.
(5) Crimen a function $f: \mathcal{X} \rightarrow \mathbb{R}$, its maximum is $A T T A I N E D$ an $S \subseteq X$ if $\exists x^{*} \in S$ such that $\forall x \in S, f(x) \leq f\left(x^{*}\right)$.
$x^{*} \in X$ is said to MAXIMLZE of on S.
This is a stranger reaniroment than existence of SUPREMUM. A nice result; makes life easy.
THROREM: A cantimuons function ATTANS ito monimum (and minimal) (weierstrass) an any non-enpty compact set.
RETURNING TO LP motivations
Jake any compact set s.
$\max C^{\top} x \longrightarrow$ Good definition? No house of computational set $x \in S \longrightarrow$ tractability.
FACT: Maximizing general (non-concane) functions is hard.

$$
\begin{aligned}
& \max f(x) \\
& \text { s.t } x \in S
\end{aligned} \stackrel{\text { equivalent }}{\leftarrow} \stackrel{\max ^{(t, x)}}{ } \begin{aligned}
& t \\
& \text { s.t. } \\
& \\
& \\
& x \in S \\
& \\
& \\
& f(x) \geqslant
\end{aligned}
$$

Optionally add $-10^{10^{10}} \leqslant t \leqslant 10^{10^{10}}$ to ensure cempartress: NITPICR.
ATTEMPT 3: $\max C^{\top} x$ Can erpperss many problems $\left(\begin{array}{c}\text { George } \\ \text { Dantzig } \\ 1947\end{array}\right)$

$$
\begin{array}{cc}
\text { s.t. } & a_{1}^{\top} x \leq b_{1} \\
& a_{2}^{T} x \leq b_{2} \\
& \\
& \left.a_{m}^{\top} x \leq b_{m}\right\}
\end{array}
$$

+ efficiently solvable.
These are technically affine (we will call them linear.)
In additicen to linearity, hawing a finite number of constraint is also Important to guarantee tractability.
(1) A set $S \subseteq$ mention spare V is CONVEX of $\forall x, y \in S$ $\forall \lambda \in[0,1], \quad \lambda x+(1-\lambda) y \in S$.
$S_{x, y}=\{\lambda x+(1-\lambda) y: \lambda \in[0,1]\}$ is a line segment.

Comments: (1) $\left\{x: a^{T} x \leq b\right\}$ is a convex set.
(2) The intersection of two (or any number of) convex sets is convex. Ex Theme, $\left\{\begin{array}{c}\left.x: \begin{array}{c}a_{1}^{\top} x \\ \vdots \\ \vdots \\ a_{1} \\ a_{m}^{T} x\end{array}\right\} b_{m}\end{array}\right\}$ is convex.

$$
A \cap B=\{a: a \in A \text { and } a \in B\}
$$

(3) If $A \& B$ are convex, then $A \times B=\{(a, b): a \in A, b \in B\}$ is convex. CARTESIAN PRODUCT
(4) If A \& B are convex, then $A+B=\{a+b: a \in A, b \in B\}$ is convex. Minkowski sum
(s) If S is a convex set in $\mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, then $\{A x: x \in S\}$ is convex.
(6) For any convex function of on a convex set S, $\underset{x \in S}{\operatorname{argmin}} f(x)=\left\{\begin{array}{ll}x^{*} S S: & \forall x \in S \\ f(x) \geqslant f\left(x^{*}\right)\end{array}\right\}$ is convex.
(2) A function $f: X($ convex $) \rightarrow \mathbb{R}$ is said to CONVE x if

$$
\begin{aligned}
& \text { function } f: X(\text { convex }) \rightarrow \mathbb{R} \text { is said } \pi \otimes \\
& \forall x, y \in X, \forall \lambda \in[0,1], \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \text {. }
\end{aligned}
$$

In words, interpolating line lies akene.

(3) How is this related to convex sets?

$$
\text { ep }(f)=\{(t, x): t \geqslant f(x)\} \text { offunition }
$$

propositions. f is a convenes function if api(f) is a convex set.
A tantalizing, let incorrect way ter link convex sets and functions is: ask of is a concern function if and only if $\forall t \in \mathbb{R}, S_{t}(f)=\{x: f(x) \leq t\}$ is convex? FALSE.
 Such functions are called quasi-convex.
but not convex

$$
\begin{aligned}
& \text { quasi-convex. } \\
& \text { convex } \Longrightarrow \text { Quasi-convex. }
\end{aligned}
$$

(4) Finally, $x \rightarrow C^{T} x$ is a convex function. Hence, LP are cowes poonepons Generabcenves program: min $f(x)$ convex function sot. $x \in S$ comines set
More generally, for

sit. $x \in S$
δ is called fecesolite regicen
x^{*} maximizing fo on S is called an optimal solution.

References:

1. History-
2. p 209 in Schrijver
3. Dantzig's article
4. Basics of Convexity - chapters 2 \& 3 in Boyd

LECTURE 2: STANOARDIZATION
EXAMRES AND WOTATIONS INVOLVING LPS

* $x \leq y$ for vectars $x \& y$ in \mathbb{R}^{n} if $x_{i} \leq y_{i} \forall i \in[n]=\{1 \ldots n\}$. note for nectors, it is NOt teme that either $x \leqslant y$ or $y \geqslant n$. Asso, wory munh hasis dependent (here, standard hasis).
$\max C^{\top} x$
s.t. $a_{1}^{\top} x \leq b_{1}$

$$
a_{m}^{\top} \dot{x} \leqslant b_{m}
$$

* ExAmple: Diet Prolulan

n food item; food j has cast c_{j}.
m mutrients; miniomum aceptablle benel of nuteri i is b_{i}. $a_{i j}$ is amount of nutsi i in food j. $\quad A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$ $\min \sum_{j=1}^{n} c_{j} x_{j}$
S.t. $\sum_{j=1}^{n} a_{i j} x_{j} \geqslant b_{i}$

$$
\Longleftrightarrow \quad \min ^{C^{T} x}
$$

* Standardization of lps

Hour te transform
(1) $\max _{x \in S} C^{\top} x=-\min _{x \in S}(-c)^{\top} x$

Nate! Size doesint
(2) $a^{\top} x \leqslant b \Longleftrightarrow(-a)^{\top} x \geqslant(-b)$ hlow up.
(3) $a^{\top} x=b \Longleftrightarrow a^{\top} x \leq b \wedge$ $a^{\top} x \geqslant b$
(4)

$$
\begin{aligned}
a^{\top} x \leqslant b \Longleftrightarrow & a^{\top} x+s=b \\
& \wedge s \geqslant 0
\end{aligned}
$$

(5) unconstranind \Longleftrightarrow replace with

$$
x^{+}-x^{-}
$$

where $x^{+}, x^{-} \geqslant 0$.
$\max e^{\top} x$
st $A x \leqslant b$
General Form
$\min c^{T} x$

$$
\text { s.t } A x=b, x \geqslant 0
$$

Standarel foom

* ENample

$$
\min _{x \in \mathbb{R}^{n}} \max _{i \in[m]}\left(a_{i}^{T} x+b_{i}\right) \lll \min _{(t, x)} \quad \longleftrightarrow
$$

why is this Aractalule?
cividen convex functions f_{1}.. fom, $f(x)=\max _{i \in[m]} f_{i}(\eta)$ is convex.

* ExAmple

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \leq 1
\end{array}
$$

\rightarrow Mamally solving this,

$$
\max \text { Value }=\max _{i \in[n]}\left|C_{i}\right|
$$

Let $\delta=\left\{i:\left|c_{i}\right| \geqslant \max _{i \in[n]}\left|c_{i}\right|\right\}$
Let's enperes this as a LP.

$$
\text { Argmax }=\operatorname{sign}\left(c_{i}\right) e_{i} \text { foorieS. }
$$

Alteust 1: $\max C^{\top} \alpha$

$$
\text { s.t } \underbrace{\sigma^{-} x \leq 1 \forall \sigma \in\{ \pm 1\}^{n}}
$$

exponentially many canstrewints,
Attenpt 2: max $C^{T} x$

$$
\begin{array}{ll}
\max & C^{1} \\
\text { s.t. } & y_{i} \geqslant x_{i}, y_{i} \geqslant-n_{i}, \sum_{i=1}^{n} y_{i} \leqslant 1
\end{array}
$$

$2 n+1$ coustraints! Enponential impeonent,
Entended formulations (area of study: entension complesity) aim to achiene drastic reductions in the numblee of constmaints, by introducing a few (polynomially) more mariahles.
HISTORY:

* Early $1990 \mathrm{~s} /$ late 1980 s ; mumerous atteupts at scehing $N P$-complete problems using $2 P_{s}$; here, at $P=N P$.
Gdea: Iypical hard prohlons (like TSP) can he written as LPo with esponentially meeny constraints. Introduce a few moere nariables to arhieve (similar to the ahoue enauple) solunomicelly mans constraints.
$r ー か ゙ い \cdots, ~$
＊Jannakukio＇g1：Any symmetric formulation of
TSP as LP has exponentially many constraints．
＊FMPTW＇12：Any formulaticen of TSP as LP has esporsentially many constraints．
＊Killing the 1980／90＇s hope．
＊EXAMPLE ：OPTIMAL TRANSPORT（equivalent to general LPS）
Mange 1700＇s：Want tee move iron ore from mines toe factories．Mines produce $u(x) d x$ ere at＇x＇． Farteeris at＇y＇consume $v(y) d y$ ore． $C(x, y)$－cost of transporting unit quantity from ＇n＇tv＇y＇．

$$
\min _{\substack{T: x \rightarrow y \\ \text { invertible }}} \int_{\mathcal{X}} c(x, T(x)) y(x) d x
$$

Sot．$v(y)=\left|\operatorname{det} \nabla T^{-1}(y)\right| \mu\left(T^{-1}(y)\right) \quad \forall y \in y$（assume inowertidu）
push－farmard of y through T ．
Roughly，by conowersing problvalility mass

$$
\begin{aligned}
u(x) d x & =\underbrace{v(T(x))}_{V(y)}|\operatorname{det} \nabla T(x)| d x \\
& =d y
\end{aligned}
$$

Assume，alkane that

$$
\int_{x} u(x) d x=\int_{y} v(y) d y=1
$$

Interpretable as Prahalility measures．

Highly non－linear prodelenr，\＆ 2 Econ Nobel Prizes TODAY applicaticess in concentration of measure ＊dywannical systems
(now, Frenchill) $\& P D E S$.
Cedric Villani, won a Fillds Medal solving related prahlons.
Kantornich 1939: Tractable solutieen by reformulatiry the problem. Notice that this is pre- $L P /$ noen-Neumann miniman duality. Aloo, gane dund.

$$
\begin{aligned}
& \min _{\Gamma: X x y \rightarrow \mathbb{R}} \int_{x} \int_{y} \Gamma(x, y) \mu(x) v(y) d x d y \\
& \text { s.t. } \forall y \in Y \quad \int_{x} \Gamma(x, y) u(x) d x=v(y) \\
& \forall x \in X \quad \int_{y} \Gamma(x, y) v(y) d y=v(x)
\end{aligned}
$$

Nottce this is linear in Γ. If y, v are prohahility mass functions, instread of density, sana as $2 P$ helow.

$$
\begin{array}{ll}
\min _{\Gamma} & \sum_{\alpha \in x} \sum_{y \in y} \Gamma_{x, y} u_{\alpha} v_{y} \\
\text { s.t. } & \forall y \in Y \quad \sum_{\alpha \in x} \Gamma_{x, y} u_{n}=v_{y} \\
& \forall x \in X
\end{array}
$$

Intuitinoly, in Kantornichis Transport Plan formlation, production \& supply caparities arise simbltemeoesly while martaining noorginal rates of u, y. ctloo, related: "Coupling" in preohahility theory.

* Councention in Convex Optanization $\min _{x \in S} f(x)$ is equimalert to $\min _{x \in \mathbb{R}^{n}}$ fo (x),

$$
\text { where } f s(x)= \begin{cases}+\infty & \text { if } x \notin S \\ f(x) & \text { if } x \in S\end{cases}
$$

Similcerly, $\max _{x \in S} f(x) \equiv \max _{x \in \mathbb{R}^{n}} f_{S}^{\prime}(x)$,
where $f_{s}^{\prime}(x)= \begin{cases}-\infty & \text { if } x \notin S \\ f(x) & \text { if } x \in S\end{cases}$

* Feasilsility programs ask does there exist $x \in \mathbb{R}^{n}$ such that $x \in \delta$?
Linear Feasilility: \exists ? $x \in \mathbb{R}^{n}$ sot. $A x \leq D$ (generally represented)
* Optimizaticen \& feosilitisty are closely related
using an optimizaticen solver tee chap feasibility.

$$
\theta(c)=\max _{\text {set. }} c^{T} x \in S
$$

Ohseone, $\theta(\theta)=\varnothing$ off $\exists x \in \mathbb{R}^{n}$ sit. $x \in S$.
Using a fecesilielity solver for optionization

$$
\mathcal{H}_{t}(S)=\left\{\begin{array}{l}
Y E S \text { if } \exists x: x \in S \\
N O \text { otherwise }
\end{array}\right.
$$

Lets' say we have scene apricori range for $-10^{100} \leqslant \max _{x \in S} f(x)<10^{100}$.
Using \mathcal{F}, we will solve $\max _{x \in S} f(x)$ to ε-accuran,
Algorithm $A=[l, u]$

1. If $|l-u| \leqslant \varepsilon$, then output an value in $[l, u]$.
2. Pubs, $t=\frac{l+u}{2}$.

$$
\text { of } \mathcal{L}\left(S \cap\{x: f(x) \geqslant t+)^{2}\right)=Y E S \text {, }
$$

call A on $[y n J$.
Else, call A our $[l, t]$.
Start with A an $\left[-10^{10}, 10^{10}\right]:$ INMIALIZATION Comments:

1. $\max _{\alpha \in S} f(x) \in[l, u]$ holds at the start of any call to the algorithm A; because

$$
\mathscr{H}_{t}(S \cap\{n: f(x) \geqslant t\})=4 E S \Rightarrow \mathscr{H}_{f}\left(S_{n}\left\{n: f(x) \geqslant t^{\prime}\right\}\right)=y \equiv S
$$ for all $t^{\prime} \leqslant t$.

2. In each successine call, the length of the argument internal $[l, u]$ is halved. After T calls, we have a $\frac{10^{10} \times 2}{2^{T}}$-sized intenacal containing max $f(x)$.
If $T \approx \log \frac{1}{\varepsilon}$, we know $\max _{x \in S} f(x)$ to ε-accuracy.
3. If the feasibility oracle alsace returns a feasolule point ' x ' an YES. Then, can recover a point $\tilde{x} \in S$ o.t.

References:
. Standardization- section 1.1 in Nemirovski
(Beyond this course) optimal transport-chapter 1 in Thorpe
(Beyond this course) extension complexity -Gerard's survey
Feasibility-optimization reduction -4.2.5 in Boyd

LECTURE 3: ALGEBRA
$L P s$ as a prooof systena
$t=\max _{\text {s.t }} c^{+} x x \leq b$ can he interpretted as $\forall x, A x \leq b \Rightarrow c^{\top} x \leq t$.

$$
\text { s.t } A x \leq b
$$

One way to prone stotements of the latter form is ley comblining enisting inequalities wiec non--1regatine multipliers (these' dont flip the siger.)

$$
\begin{aligned}
& \left(x_{1} \leqslant 2\right) \times 3 \\
& \left(x_{2} \leqslant 4\right) \times 2
\end{aligned}>\quad \begin{gathered}
3 x_{1}+2 x_{2} \leqslant 14 \\
\text { aho walid }
\end{gathered}
$$

The nou-trinial/interesting lit for $L P_{S}$ is that such a proop (in the restricted longuage of multiplying existing inequalitis with non-negatione statements, then adding) almays enists for any nalid inequahty. We will seon algorithuic proaf. This remarkahle fact is not true alvoent moethmatics in general, i.e., courtesy Godel, there are 'trua' lut 'unprowable' stactements in moethematics.

Rough gdea: Eliminate worialiles ly adding moore constraints. \approx opposite of entended formulations.
An algoritem to solve linear feasilility prolleans, i.e. does there exist $x_{1} \in \mathbb{R}^{n}$ such dnat $A x \leq b$?

Neete, can use this for (high-accuracy) opttimization wia the ceptomization - feasilility reduction.
1-step of FM Elimimation
(can always ensure tovis by bee 2)
In.nut: ' m ' inearalition of the lnsem, $a_{:}^{\top} x<h$: $\forall i \in[m T$

1. Divide all inequalities inter 3 sets
$Z=\left\{\right.$ all inequalities that dent involve $\left.x_{1} ; a_{i 1}=0\right\}$

$$
P=\left\{\text { all } n \quad \text { with } a_{i 1}>0\right\}
$$

Each com le rewritten as

$$
x_{1} \leqslant \frac{b_{i}-\sum_{j \neq 1} a_{i j} x_{j}}{a_{i 1}}
$$

$$
N=\left\{\text { all " with } a_{i 1}<0\right\}
$$

Each can he rewritten as

$$
x_{1} \geqslant \frac{b_{i}-\sum_{j \pm 1} a_{i j} x_{j}}{\underbrace{a_{i 1}}_{i 1}}
$$

2. Constewct a new feasibility problem by
(a) Copying all of Z.
(b) $\forall p \in P \quad \forall n \in N$, introduce $n\left(x_{2} \ldots x_{n}\right) \leq p\left(x_{2} \cdots x_{n}\right)$. These nee longer contain n_{1}.
Rearrange (b) into $a^{\top} x \leq b$ form.
Claim: New $L P$ is feasible of old $L P$ is feasible.
Proof. $x_{1} \ldots n_{n}$ satisfies ald LP. (IF)
$\Rightarrow x_{2} \ldots x_{n}$ satisfies z_{3} and

$$
P\left(x_{2} \ldots x_{n}\right) \geqslant x_{1} \geqslant n\left(x_{2} \ldots x_{n}\right) \quad \forall n \in N, P \in P
$$

$\Rightarrow x_{2} \ldots x_{n}$ satisfies new LP.
$x_{2} \ldots x_{n}$ satisfies new LP. (ONLY IF)
By construction, $x_{2} \ldots x_{n}$ satisfies z.
Also, $\max _{n \in N} n\left(x_{2} \cdot n_{1}\right) \leqslant \min _{p \in p} p\left(x_{2} \ldots x_{n}\right)$.
(Recall max ont ϕ is $-\infty$, min out ϕ is $+\infty$).
Choose $n_{1} \in\left[\max _{n \in N} n\left(n_{2} \ldots n_{n}\right), \min _{p \in P} p\left(n_{2} \ldots n_{n}\right)\right]$ arbitrarily.
$n_{1} \ldots n_{n}$ satisfies cold PP.
Comments. 1. n-stepo of FM elimination solves any feasibility problem. At termination, we either hance all beutellagical inequalities or a contradiction.
2. If old $L P$ has m constraints, new $L P$ has $\leq m^{2}$ constraints. Therefore, the trousoript produced by the algorithm (over n-steps), and hence the running time is $\approx m^{2^{n}}$.
 so, FM is largely a conceptual algorithm.
3. If A, b only contain rationals, the
$A x \leqslant b$ is feosille $\Rightarrow \exists x$ rational fecesille. why? Because FM conly creates inequalities with rational coefficients, given rational A, b.
Olisercuntion: Any new inequality produced during FM is done lu combining existing ones with non-- negative coefficients.

$$
\begin{aligned}
& \begin{array}{l}
(1) \\
a_{1} x_{1}+\sum_{i=2}^{n} a_{i} x_{i} \leq b \\
\text { (2) } \\
\left.a_{1}^{\prime} x_{1}+a_{1}>0\right) \\
a_{i=2}^{n} x_{i}^{\prime} \leq b^{\prime} \\
\left(a_{1}^{\prime}<0\right)
\end{array} \\
& \begin{array}{l}
\text { same as } \\
\frac{1}{a_{1}} \times(1)+\frac{1}{\left|a_{1}^{\prime}\right|} \times(2)
\end{array}>\frac{b^{\prime}-\sum_{i=2}^{n} a_{i}^{\prime} x_{i}}{a_{1}^{\prime}} \leqslant x_{1} \leqslant \frac{b-\sum_{i=2}^{n} a_{i} x_{i}}{a_{1}} \\
& \downarrow
\end{aligned}
$$

Farkeas' $A x \leqslant b$ is infeasible iff $\exists u \geqslant 0, u^{\top} A=0, u^{\top} b<0$.
Lemma.
gaterpretation. If $A x \leq b$, then for any $u \geqslant 0, u^{\top} A x \leq u^{\top} b$. So if $7 u \geqslant 0, u^{\top} A=0, u^{\top} b<0$, that implied $A x \leqslant b$ is infeasible. Because, otherwise $D=u^{\top} A x \leq u^{\top} b<0$; a contradiction.
' u ' is therefore a certificates of infeasibility; its existeme guarantees inferasilivity of $A x \leqslant b$. The interesting list is that such a 'Ulactant' certificate always enisto mhenewer $A x \leqslant b$ is infeasible. In this sense, the linear inequality procef system is complete, not just sound.
Proof. Based on the correctness of FM, for any infeasible system $A x \leqslant b, F M$ must terminate in a contradiction of the form $0 \leqslant b_{0}$, where $b_{0}<0$. By the last olssernation FM implicitly produces a netter $u \geqslant 0$ such that $u^{\top} A=C$ and $u^{\top} b=b_{0}<0$.
This is a central result in the theory of CPs, and only a step avery from $L P$ duality itself. We will complete this later.
3 VIEWS OF $L P_{S}$ will assume $P=\{x: A x=b, x \geqslant 0\}$, $\max _{x \in P} C^{m} C^{x} x$, where
(a) $4 x=b$ has atleast ore solution, or $b \in \operatorname{COLSP}(A)$.

Else, P is infeasille/empty.
(b) Roux of A are linearly independent. $(m \leq n)$.

OPTIMIZATION
Diff $x \in P$ is a VERTEX if $\exists C, C^{\top} x>C^{\top} y \quad \forall y \in P-\{x\}$.

Def n: $F \subseteq P$ is a k-dimensional fare of P if
(1) $\exists x_{0}$ and k-dimensicenal subspace V send $P \subseteq x_{0}+V$,
(2) $\exists c, z$ such $c^{\top} x=z \forall x \in P, \forall y \in P-F, c^{\top} y<z$.
F is a proper k-dim face of P is it is a k-dim fare, lust set a $(k-1)$-dimensional fare.

* VERTEX is a 0 -dimensional proper fare.

EDAE is a 1

GEOMETRIC
Bug $\quad x \in P$ is an EXTREME POINT if $\nexists u \neq v, \lambda \in(0,1)$ such that $\lambda u+(1-\lambda) v=n$.

ALGEBRAIC
Def $x \in P$ is a BASIC FEASIBLE SOL L^{N} if $\exists B \subseteq[n],|B|=m$ sue that $A_{B} \in \mathbb{R}^{m \times m}$ is inmerticlie and $X_{\bar{B}}=0$.
notation: For any $S \varepsilon[n],(a) \bar{S}=[n]-S$. : complement of S
(b) A_{S} is a $m \times|s|$-sized matron composed only of columns whore indices are in S.
(c) x_{S} is $|\delta|$-sized veter composed only of coordinates whose indices are in S.
For a vector $x, \operatorname{Supp}(x)=\left\{j: x_{j} \neq 0\right\}$.

* Neetice that every B can correspond tee atmost one BES. Ciinen $B, A_{B}^{-1} b \in \mathbb{R}^{m}$ extended to \mathbb{R}^{n} le padding moth O^{\prime} 's an \bar{B} is the only possible candidate fear BES, lux its possible that $A_{B}^{-1} b \geqslant 0$ fails.
These 3 nidus core equinalent.
THEOREM. $x \in P$ is a vertex \Leftrightarrow it is an entreene point \Leftrightarrow it is a BFS. PROOF. $V \Rightarrow E$
 sub $n=\lambda u+(1-\lambda) v$. But then $e^{\top} x=\lambda\left(c^{\top} u\right)+(1-\lambda)\left(c^{\top} v\right)$.
This is a contradiction because $u \neq x$ and $v \neq x$, heme $C^{\top} u<C^{\top} x$ and $C^{\top} v<C^{\top} x$.
$E \Rightarrow B F S$.
n is an entree point. Recall $\sup (x)=\left\{j: x_{j}>0\right\}$.
CASEA: A Supp (n) has linearly independent columns. gemplies that $|\operatorname{supp}(x)| \leqslant m$. Since $x \frac{}{\operatorname{supp}(x)}=0$, it is tempting two thinte $B=\operatorname{supp}(x)$ concludes this case. This almost
works except $|B|=m$, whence $|S \cup p p(x)|$ car we sermon. Here's a foo: sine rows of A are linearly independent, it's possible to consteunt $B_{1}{ }_{1}$ storting with $\operatorname{supp}(x)$, and
then expanding this set incrementally till it includes i^{\prime} indices ley choosing column of $A_{\bar{B}}$ that are linearly independent of that of A_{B}. At the end, we haw $B \subseteq[n]$, $|B|=m, A_{B}$ is innwertolle. Finally, since $B \geq \operatorname{supp}(x)$, $n_{\bar{B}}=0$. Hence, n is a BFS.
CASE B: $A \operatorname{supp}(x)$ has linearly dependent columns.
$\therefore \exists w, A_{\text {supp }(x)} w=0, w \neq 0$. By padding w with $O^{\prime} s$ we can constant $\widetilde{W} \in \mathbb{R}^{n}, \widetilde{w}_{\text {supp }(x)}=w, \widetilde{W} \frac{}{\operatorname{supp}(x)}=0, A \widetilde{W}=0$. Define $y_{+}=x+\varepsilon \widetilde{w}, y_{-}=x-\varepsilon \widetilde{w}$. Note $x=\frac{y_{+}+y_{-}}{2} ;$ yet $y_{+} \neq y$. for any $\varepsilon>0$ since $\tilde{w} \neq 0$. Also $A y_{+}=A n+A \tilde{w}=b$ and $A_{y_{-}}=b$. A θ, if we can ensure $y_{+}, y_{-} \geqslant 0$, the $y_{+}, y_{-} \in P$ implying we have reached a contradiction. Choose $0<\varepsilon \leqslant \frac{\min _{i \in \sup (n)} x_{i}}{\max _{i \in(n]}\left|w_{i}\right|}$; olserme $\operatorname{supp}(\tilde{w}) \subseteq \operatorname{supp}(x)$ te conclude $y_{+}, y_{2} \geqslant 0$.
$B F S \Rightarrow V$
x is a $B F S .7 B,|B|=m$ such A_{B} is invertible and $x_{\bar{B}}=0$. Note that $A_{B} n_{B}=b$. Construct $C \in \mathbb{R}^{n}$ such $c_{j}=\left\{\begin{array}{cl}-1 & \text { if } j \in \bar{B} \\ 0 & \text { if } j \in B\end{array}\right.$ now, $C^{\top} x=0$. Notice for any $y \in P$, since $y \geqslant 0, C^{\top} y \leq 0$. Well prone if $C^{\top} y=0$ then $y=x$ toe establish that x is a vertex. Consider $y \in P$ such that $C^{\top} y=0 . y_{\bar{B}}=0$ and A_{B} is innerticle. y is a BFS. But then for B can correspond to at most one $B F S_{0} \therefore y=x$.

References:
. Fourier-Motzkin Elimination-
I like 3.1 and 3.2 in Gerard's book; includes proof of Farkas' Lemma
Also section 6.7 in
Also section 6.7 in Matousek
Alternative: Section 2.8 in Be
3. Alternative: Section 2.8 in Bert

Section 2.2 and 2.3 in Bertsimas
Chapter 4 in Matousek
Chapter 4 in Matousek

LECTURE 4 : GEOMETRY
Sine entry $B \subset[n]$ of size m corresponds tee at most cone BFS. the number of $B F S_{s}$ is at most $\binom{n}{m}$. Recall that me are loedzing at LPS of the feerm.

$$
\begin{aligned}
& C^{T} x \\
& P=\left\{\begin{array}{l}
A x=b \\
x \geqslant 0
\end{array}>\text { (1) } A x=b \text { has at least one solutican, } b \in \text { corP } A\right. \text {. } \\
& \text { ie } A \text { are emearly independent. }
\end{aligned}
$$

The next result we prones states that any $L P$ of this form chooses between one of these three fates:
(1) The $L P$ is infeasible, i.e. $\max _{x \in P}{C^{\top} x=-\infty \text {. }}^{(2)}$
(2) The LP has unbounded optima, i.e. $\max _{x \in P} C^{\top} x=+\infty$.
(3) At (finite) optaria enisto, and a BFS x ardrienes it. Implicitly, we have the feelloming finnite-time algorithm: SOLVING lis WITH BOUNDED OPTIMAL VALUE BY ENUMERATION

1. For each $B \leq[n]$ of size m, solve $x_{B}=A_{B}^{-1} b$. Check if $x_{B} \geqslant 0$. On ' $Y E S$ ', set $x_{\bar{B}}=0$ and add x the the set of BFSS.
2. If no BESs are fecund, output INFEAS BLE, else output the highest olyectione salve achieved by any BFS.
This takes $\approx\binom{m}{n} \times$ poly (n) time. The simplex algorithm reuses tho idea, lust seances for PFSS greedily.
FUNDAmENTAL in any feasible LP wish bounded optima THEOREM OE (note this is weaker than saying P is loeeunded) SIMOLEK. Ia BFS x that echienes the ceptirnal value.
Lets start with a somewhat semningly moulted oelisernation. LEMMA Every feasible $L P$ in the steandourd form has an entree point. PROOR. Dime $P=\{x: A x=b, x \geqslant 0\}$ is feasible, choose x the he a feasible point with the smallest mimer of non-zerce entries. We claim ' x ' is em extreme paint. If not, $\exists u \neq v t P$, $\lambda \in(0,1)$ such that $\lambda u+(1-\lambda) v=x$. Sine $u, v \geqslant 0$, we have $\operatorname{supp}(u), \operatorname{supp}(v) \subseteq \operatorname{supp}(x)$, i.e. there can he no coordinate cancellations. We claim $7 j \in[n]$ such $(u-v)_{j}>0$, sine $u \neq v$ and if $u-v$ is all negations, we relabel $(u, v, \lambda) \longleftrightarrow(v, u, 1-\lambda)$.

Now, consider $y=x-\varepsilon(u-v)$. Choose $\varepsilon=\min _{j^{\prime}:(u-v)^{\prime}>0} \frac{x_{j}}{(u-v)_{j}}$.
Now, $A y=A x-\varepsilon(A u-A v)=b$, and $y \geqslant 0$ sima $\operatorname{supp}(u-v) \subseteq \operatorname{supp}(x)$. Yet y has at laxest one fewer non-zete coordinate than n. Heme, x must he an extreme point.
Because of BFS-V-E equinalince, mill prone the fundamental theorem of simpler by proning the enisteme of an optimal extreme point.
PROD F OF Lime max $C^{\top} x$ owner $x \in P=\{x: A x=b, x \geqslant 0\}$ is EUNO.THM. fecesille and has hounded optima, $\exists v^{*} \in \mathbb{R}$ $\sinh \max _{x \in P} e^{\top} x=v^{*}$. Consider $Q=\left\{x ; A x=b, c^{\top} x=v^{*}, x \geqslant 0\right\}$.
We know \exists an entree peeintris in 2 . Note that $c^{\top} x=v^{*}$ and $x \in P$ since $Q \leq P$. So, it cenly remains the shew such an x is extreme in P too. Suppose nat. Then, $\exists u \neq v \in P, \lambda \in(0,1)$ such that $n=\lambda_{u}+(1-\lambda) v$. Sine x is extreme in θ, at least one of u, v most not he in Q. Hence, $\min \left\{c^{\top} u, C^{\top} v\right\}<v^{*}$. colo, $\max \left\{c^{\top} u, c^{\top} v\right\} \leq v^{*}$. But $c^{\top} x=A c^{\top} u+(1-\lambda) c^{\top} v$ implying $C^{\top} x<V^{*}$. Hence, x is entree in P.
APPLICATIONS OF THE FUNDAMENTAL THEOREM

* $\operatorname{AFFINE} \operatorname{HULL}(S)=\left\{x=\sum_{i=1}^{k} \lambda_{i} x_{i}: \exists k \geqslant 0, x_{1} \cdots x_{k} \in S, \lambda_{1} \cdots \lambda_{k} \in \mathbb{R}, \sum_{i=1}^{k} \lambda_{i}=1\right\}$.
- CONCTULL(S) $=\left\{x=\sum_{i=1}^{n} \lambda_{i} x_{i}: \exists k \geqslant 0, x_{1} \ldots x_{k} f s, \lambda_{1}, \cdots \lambda_{k} \geqslant 0\right\}^{i=1}$.

The next theorems are on the sufficiency of minimal representations: sure yeen can represent any $x \in \operatorname{CONLCHILL}(s)$ as non-negatime combinations of finitely many points in S, but hon many are needed in the moerst-case?
CARATHEDDDEY'S
THEOREM FOR $\quad x \in \operatorname{CONIC} \operatorname{ruu}(S)$, where $S \subseteq \mathbb{R}^{n}$, then $\exists n_{1} \ldots x_{n} \in S$, THEOREM FOR THEOREM FOR
CONES Such that $n \in \operatorname{CONICNULL}\left(\left\{x_{1} \cdots x_{n}\right\}\right)$.
 Let $x=\left[x_{1} \ldots x_{k}\right]$ he the matin whose columns are x_{k} 'd. Then $P=\{x: x=X \lambda, \lambda \geqslant 0\}$ is feasible. cossoder $\max _{x \in P} 0$. then \exists
a BFS λ in P with almost $n=$ number of equality constraint many noen-zero elements, phoning the theorem.
CARATHEDDORY'S of $x \in \operatorname{CONVEXHULL}(S)$, where $S \subseteq \mathbb{R}^{n}$, then $\exists x_{1} \ldots x_{n+1} \in S$, THEOREM FOR
CONVEX HuLLS
Sun
$x \in \operatorname{CONVEX}-\operatorname{HVLL}\left(\left\{x_{1} \cdots x_{n+1}\right\}\right)$.
PROOF. This time we have that $P=\left\{x: x=x \lambda, \lambda \geqslant 0,1^{\top} \lambda=1\right\}$ is feasible. Hence, \exists a BFS λ is P with atmost $n+1=$ number of equality constraint many non-zeros.
* $\{x: A x \leq b\}$ is a polyhedron.
* $\{x: A x \leq 0\}$ is a polyhedral cone.

These descriptions create a set by exclusion: each inequality rejects some subset of points in \mathbb{R}^{n}; surninors/memalers are those than satisfy simultancously all thess checks.

* $\operatorname{CONICRULL}\left(\left\{x_{1} \cdots x_{k}\right\}\right)$ is a finitely generated cone.

* Convex $\operatorname{Hur}\left(\left\{x_{1} \ldots x_{k}\right\}\right)$ is a polytepe.

These descriptions create sets ley inclusion: as long as a small subset (even 2 poincto) linearly combine to produce a point, it is in the set. A deep result in polyhedral theory is that these ways of constructing sets are equally powerful. SOME PREREQS.

* Recall Farkas' Lemma: $A x \leq b$ is infeasible inf $\exists \lambda \geqslant 0, \lambda^{\top} A=0, \lambda^{\top} b<0$. ARAS' LIMA
BOR STANOARDEDRM

$A x \geq b$
$x \geqslant 0$$\quad$ is feasible eff $\forall \lambda \quad \lambda^{\top} A \leq 0 \Rightarrow \lambda^{\top} b \leq 0$. Interpretation: $\begin{aligned} & A x=b \\ & x \geqslant 0\end{aligned}$ is feasible inf $b \in \operatorname{CONLCHOLL}\left(\left\{a_{1} \ldots a_{n}\right\}\right)$. The theorem says either this happens, cor there is a hyperplane passing through the corbie which separates b and $\left\{a_{1} \ldots a_{n}\right\}$.
Either

or

The existence of such hyperplane holds for - any 2 closed disjoint comer sets, at least one of which is compact. But for our purposes, Farkas' Lemma suffices.

PROOF: (\Rightarrow) If $A x=b$ is feasible, then $\forall \lambda \quad \lambda^{\top} A x=\lambda^{\prime} b$. If $\lambda^{\top} A \leq 0$, then $\lambda^{\top} b=\left(\lambda^{\top} A\right) x \leqslant 0$ since $\lambda^{\top} A n$ is a dot product lectern a non-negatione ' x^{\prime} \& a non-positime ($\left.\lambda^{\top} A\right)^{\top}$.
(\Leftrightarrow) We will prone the contra-pesiticu; i.e. $A \Rightarrow B \geqq 7 B \Rightarrow 2 A$. If $A x \leqslant b,-A x \leqslant-b,-x \leqslant 0$ is infeasible, $F \lambda_{1}, \lambda_{2}, \lambda_{3} \geqslant 0$ such that $\left(\lambda_{1}-\lambda_{2}\right)^{\top} A-\lambda_{3}=0$ and $\left(\lambda_{1}-\lambda_{2}\right)^{\top} b<0$. We rewrite this as $\left(\lambda_{2}-\lambda_{1}\right)^{\top} A=-\lambda_{3} \leqslant 0$, and $\left(\lambda_{2}-\lambda_{1}\right)^{\top} b>0$ the complete the proof.

* (A, R) is a doenlle description pair inf $\forall x$

$$
A x \leq 0 \Longleftrightarrow \exists \lambda \geqslant 0 \quad x=R \lambda .
$$

LEMMA, (A, R) is a DDP inf $\left(R^{\top}, A^{\top}\right)$ is a DDP.
PROOR. By symmetry, it is enough to prone one side. Day (A, R) is a DDP. Then, we have for any ' x ' that

$$
\begin{aligned}
& R^{\top} x \leq 0 \\
\Leftrightarrow & \forall \lambda \geqslant 0 \quad \lambda^{\top} R x=(R \lambda)^{\top} x \leq 0 \\
\Leftrightarrow & \forall y \quad A y \leq 0 \Longrightarrow y^{\top} x \leq 0 \text { using }(A, R) \text { is DDP. }
\end{aligned}
$$

$\Leftrightarrow \exists \lambda \geqslant 0, A \lambda=x \quad$ by Farkas' Stendard-form Lemma.
MNK KowskI WEY In y polyhedral cone is a finititly generated THEOREM POR CONES cone, and mice versa.
PROOF. Weill prone that $\forall R, \exists A$ sech that $\operatorname{CONICHULL}(R) \ni x$ inf $A x \leq 0$. Take any x. Comider $\{\lambda R-x \leq 0, x-R \lambda \leq 0,-\lambda \leq 0\}$. Run Eourier-Motzkin to eliminate all λ^{\prime} s. Sine me start mosh homogenous inequalities. We corrine at $\left\{A_{x} \leqslant 0\right\}$ for some A such that the new system is feasible in x of the former system is feasible in (x, λ) for $\lambda \geqslant 0$. This establishes that any finitely generated cone is a polyhedral cone. Finally, using the DDP lemma, ne also get that $\forall R \exists A$ conic rive $\left(A^{\top}\right) \ni n$ iff $R^{\top} x \leqslant 0$, completivin the proof.
MINKOWSKI WEVI Any polyhedra is expressible as the sum of THEOREM FOR POLYHEDRA. a polytape and a finitely generated cone, and nice-wersa.
$* P=\{x: A x \leqslant b\} . C_{p}=\operatorname{conicervul}\left(\left\{\begin{array}{l}\left.\binom{1}{1}: x \in P\right\}\end{array}\right)=\left\{\begin{array}{r}A y-b t \leq 0 \\ t \geqslant 0\end{array}\right\} . \quad \begin{array}{c}x \in P \text { if }\binom{x}{1} \in C_{p} . \\ \text { from inv. }\end{array}\right.$

PROOF. (\Rightarrow) satisfois $A x \leq b$ off $\binom{n}{1} \in C_{p}$. But $C_{p}=\operatorname{conE}\left(\left\{\begin{array}{l}p_{1} \\ 1\end{array}\right) \cdots\binom{P_{k}}{1},\binom{a_{1}}{1}, \ldots\binom{a_{1}}{0}\right.$, by $M W$ for cones for some $p^{\prime} s, q^{\prime} s_{0}\binom{n}{1} \in C_{p}$ inf $x=\sum_{i=1}^{k} \lambda_{i} p_{i}+\sum_{i=1}^{l} u_{i} q_{i}$, and $\sum_{i=1}^{k} \lambda_{i}=1$. Therefore $P_{2} \operatorname{CONVEx}\left(P_{1}-P_{k l}\right)+\operatorname{CONE} \sum_{i=1}\left(q_{1} \cdots q_{j}\right)$.
 then, by now for cones, $\exists A, b$ such that $C_{P}=\{(y, t): A y-b t \leqslant 0\}$ Jake $P=\left\{x:\binom{x}{1} \in C_{p}\right\}=\{x: A x \leq b\}$ 。

* Note that $\{D\}$ is the hounded cone. Hence, we reach the foellieming. CorollAry: Any hounded polyheotra is a polytepe, and nice-versa. In fact, we can characterize such polytopes.
COROLARY: Any hounded polyhedra is a conner hull of ito nertices.
PROOF: Any hounded polyhedron $P=\underset{H M L L}{\operatorname{CONVEX}}\left(\left\{x_{1} \ldots x_{p}\right\}\right)$ for seance vectors x_{p}^{\prime} do Iteratively delete any $x_{i} \in \underset{\substack{\text { convex } \\ \text { puL }}}{ }\left(\left\{x_{1} \cdots x_{p}\right\}-\left\{x_{i}\right\}\right)$ ac that $P=\operatorname{convex}\left(Q=\left\{x_{1} \ldots x_{q}\right\}\right)$ allure $\left.x_{i}+\begin{array}{c}\text { CONVEX } \\ \text { rune }\end{array}\left(Q-\sum x_{i}\right\}\right) \forall i \in[q]$ 。 Let V he the set of all vertices of $P_{0} W_{e}$ claims $Q \subseteq V_{0}$ Else, generically say $x_{1} \notin V$. Then $\exists u \neq v \in P, \lambda \in(0,1)$ such
 $\alpha, B \geqslant 0$, $\mathbb{1}^{\top} \alpha=\mathbb{1}^{\top} \beta=1$ and $\alpha_{1}, B_{1}^{i=1}<1$. But then $x_{1}=\frac{1}{1-\lambda \alpha_{1}-(1-\lambda) \beta_{1}} \sum_{i=2}^{q}\left(\lambda \alpha_{i}+(1-\lambda) \beta_{i}\right) x_{i} j$ a contradiction.

* No good reason why $L P_{s} A x \leq b$ should have sparse Solutions at all.
* Modified BFS definitiven: x is a BFS for $A x \leqslant b\left(x \in \mathbb{R}^{\eta}\right)$ if there are atleast ' n ' actime/tight constraints at x, with linearly independent a_{i}^{\prime} 's.
* But consider: max $C^{T} x$. It's feasible, has hounded optiona. $c^{\top} x=d$
Yet max $C^{\top} x$ has no extreme poelnto/nertices/BFS.

$$
\begin{aligned}
\text { s.t. } & c^{\top} x
\end{aligned} \leq d,
$$

* A set δ is pointed if it does not container a line Contending infiimitely in hath directions), i.e. if $\nexists d \in \mathbb{R}^{n}$ such $\forall \lambda \in \mathbb{R}, x \in S, x+\lambda d \in S$ 。
* Fundamental Theorem of Simples: For feasillele LP in the general form with a pointed feasible set and hounded optima, Ia BFS which attains the optional value.
References:
Optimality of BESs-
Section 4.2 in Matousek
Minkowski Weyl Theorems-
Section 3.5 in Gerard's book
Section 3.5 in Fukuda

3. Results on LPs in general form

Section 2.2 and 2.3 in Bertsimas

LECTURE 5: DUALITY

$$
\operatorname{Man} \text { Flow }=5+4+4=13 .
$$

How te know/ certify this is optimal? RED LINE.
Magic: Jerk certificate always exists.

Heuristically: $\max _{A x} C^{\top} x=b=\max _{\alpha} \min _{y \geqslant 0} C^{\top} x+y^{\top}(b-A x)$
Computing
Duals

$$
\begin{aligned}
& a x_{x} C^{\top} x=\max _{x} \min _{y \geqslant 0} C^{\prime} x+y^{\prime}(b-A x) \\
& A x \leqslant b=y^{\top} b+x^{\top}\left(C-A^{\top} y\right) \\
& \text { PRIMAL }
\end{aligned}
$$

$$
\stackrel{?}{=} \min _{y \geqslant 0} \max _{x} y^{\top} b+x^{\top}\left(c-A^{\top} y\right)
$$

$$
=\min b^{\top} y
$$

$$
C=A^{\top} y \text { DUAL }
$$

$$
y \geqslant 0
$$ lecture.

dual

* Notice that dual of the dual of a LP is the LP itself. Interpretation: Recall the diet problem. min $C^{\top} x$ $\max b^{\tau} y$ A Seller wants tee sell nutrient tablets at prices $A x \geqslant b$ $A^{T} y \leq C$ $y \geqslant 0$. y while making sure that food is costlier than its $\begin{gathered}x \geq 0 \\ \text { constituents. }\end{gathered}$
WEAK DUALITY Ing feasible y in max $b^{\top} y$ provides a TM
(DUal) min $C^{\top} x$

$$
\begin{aligned}
& c^{\prime} x \\
& A x=b(p R 1 M A 2) \\
& x \geqslant 0
\end{aligned}
$$

PROOF. Take any feasible $x, y ;$ if primal is infeasible, any real $<+\infty$. Then, $\quad C^{\top} x \geqslant\left(A^{\top} y\right)^{\top} x=y^{\top} A x=y^{\top} b$ since $x \geqslant 0, C-A^{\top} y \geqslant 0 . \square$
Implication: If dual is unbounded, then primal is infeasible \& mice-nersa.
Weak duality is not an acriolent. whemener we exchanged the orders of min / \max operators in the heuristic derimation, there's a consistent assignment of $\geqslant 1 \leqslant$ that held consistently. Jake $f: x x y \rightarrow \mathbb{R}$. Clearly, $\forall x \in x \forall y \in Y$, $\max _{y \in Y} f(x, y) \geqslant f(x, y)$. Then, $\forall y \in y, \min _{x \in x} \max _{y \in y} f(x, y) \geqslant \min _{x \in x} f(x, y) . \therefore \min _{x \in x} \max _{y \in y} f(x, y) \geqslant \max _{y \in y} \min _{x \in x} f(x, y)$

$$
\begin{aligned}
& \min _{A_{x=D}}^{C_{x}^{\top}}=\min _{x \geqslant 0} \max _{\lambda} c^{\top} x+\lambda^{\top}(b-A x) \stackrel{!}{=} \max _{\lambda} \min _{x \geqslant 0}+b^{\top} \lambda+x^{\top}\left(c-A^{\top} \lambda\right) \\
& \alpha \geqslant 0 \\
& =\max b^{\top} \lambda \\
& c \geqslant A^{\top} \lambda_{0} \\
& \text { Well make the questionable steps } \\
& \text { concrete by the end of the }
\end{aligned}
$$

Any PRIMAL/DUAL pair suffers from 1 of 4 fates:
(1) Both $P \& D$ are inflasille.
(2) P is infeasible, D has unbounded ceptima.
(3) D is infeasible, P has unbounded optima
(4) P is feasible and has hounded optima. then D is feasible and has hounded coptiona. Further, the optional solves of P\&D match.
 the. options, then $\max _{c>b^{\top} y}$ is fecesille and. $c \geqslant A^{\top} y$

$$
\min c_{\substack{c^{\top} x \\ x \geqslant b}}^{x \geqslant 0}=\max b^{\top} y
$$

PRoof. Let $v^{*}=\min C^{\top} x$. We will prone $\exists y$ such that $A^{\top} y \leq C$ $b^{\top} y \geqslant v^{*}$.
This is enough since for any feasible $y, b^{\top} y \leq v^{*}$ by meat duality. Let'' assume $\exists y$ such $\begin{gathered}A^{\top} y \leq C \\ -b^{\top} y \leq-v^{*}\end{gathered}$. Then, by Forkeas' lnmana,

$$
\begin{array}{ll}
F\binom{\lambda}{\lambda_{0}} \geqslant 0 \text { such } & \lambda^{\top} A^{\top}-\lambda_{0} D^{\top}=0 \text { and } \lambda^{\top} c-\lambda_{0} v^{*}<0 . \\
& \left(\text { or } A \lambda=\lambda_{0} b\right) \\
& \left(a r \lambda^{\top} c<\lambda_{0} v^{*}\right)
\end{array}
$$

Case A: If $\lambda_{0}>0$, then $\tilde{x}=\lambda / \lambda_{0}$ satisfies $A \tilde{x}=\frac{A \lambda}{\lambda_{0}}=b, \tilde{x} \geqslant 0$ and $C^{+} \tilde{x}=\frac{C^{\top} \lambda}{\lambda_{0}}<V^{*}$. A contradiction.
Core B : If $\lambda_{0}=0$, then take any feasible x^{*} with $C^{\top} x^{*}=v^{*}$. Consider $\tilde{x}=n+\lambda$. Then, $\tilde{x} \geqslant 0, A \tilde{x}=A x+A \lambda=b+D=b$ and $C^{\top} \tilde{x}=C^{\top} x^{*}+C^{\top} \lambda<V^{*}$. A contradiction, again.
Although me are using Farka's lemma here, morally, strong duality is an 'chnioens' consequence of the completeness of the Fourier Motzkin algorithm in derining valid linear inequalities. Concretely $\max _{x} c^{\top} x x \leq b=$ is equivalent to $\forall x A x \leq b \Longrightarrow c^{\top} x \leq v^{*}$. If the last implication is true, FM can prone it by combining rows of $A x \leq b$ with now-negaticne multipliers $\varphi \geqslant 0$. If so, $y^{\top} A=c$ \& $y^{\top} b \leqslant \nu^{*}$. Also, for any such y, li weak duality we have $y^{\top} b \geqslant V^{*}$.

THE. ON COMP. SLACKNESS

If x^{*} maximizes es .t. $A x \leq b, y^{*}$ minimizes st. $A^{+} y=c$, then

$$
\forall i \in[m], \quad y_{i}^{*}\left(a_{i}^{\top} x^{*}-b_{i}\right)=0
$$

In weerds, y_{i}^{*} can he positive only mien the corresponding inequality $a_{i}^{\top} x^{*} \leqslant b_{i}$ is tight for $x^{k_{0}}$
PROOF. By otrong duality, $0=c^{\top} x^{*}-b^{\top} y^{*}=y^{*}\left(A x^{*}-b\right)=0$. yet, $y^{*} \geqslant 0$, and $A x^{*}-b \leq 0$. Each term in the dot product is noen-positine, get the sum is zero \Rightarrow each term is zero.
Geometric gnterpretaticar: $\begin{aligned} & A^{\top} y=c \\ & y \geqslant 0\end{aligned}$ is same as

$$
C \in \operatorname{CONE}(\underbrace{a_{1} \ldots \ldots a_{m}}_{\text {rows of } A})_{0}
$$

But at optimality, we can say more.

$C \in \operatorname{CONE~(~} a_{i}$'s of active constraints at x^{*}). This is exactly what comp. Slackness implies.

$$
C=A^{\top} y^{*}=\left(A^{\top}\right)_{\operatorname{supp}\left(y^{*}\right)} Y^{*} \sup (y t)
$$

\in CONE of active constraints at x^{*}.
In fact, strong Duality is same as $\left.\binom{C}{v^{*}} \in \operatorname{CONE}\binom{a_{i}}{b_{i}} \begin{array}{c}\text { for active } a_{i}^{\top} x^{*} \leqslant b \\ \text { at } x *\end{array}\right)^{*}$
(c, A, b) are inputs tee aLP. But do me know these toe absolute certainity? Often not. Say we know $c \in U_{c}, a_{i} \in U_{a_{i}}, b_{i} \in U_{b_{i}}$ Can me optimize for the morst-case noelle?

$$
\min _{x} \max _{c \in U c} c^{T} x
$$

$$
\Leftrightarrow \min _{x, z} z
$$

$\forall i \in[m] \quad a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in U_{a_{i}}, b_{i} \in U_{D_{i}} \quad \forall i \in[m] a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in U_{a_{i}}, b_{i} \in U_{b_{i}}$. Thus we can assurne w.l.o.g that there's uncertainity in c. Similarly, we can get rid of uncertaimity in b_{i}, le choosing $b_{i}=\min _{b_{i} \in U_{b_{i}}} b_{i}$ regardless ref n_{B} since $a^{\top} x \leqslant b_{1} \Rightarrow a^{\top} x \leqslant b_{2} \forall b_{2} \geqslant b_{1}$ $b_{i} \in U_{b i}$
So, there's just $U_{a_{i}}$ Lett stick to polyhedral uncerteimityo $u_{a_{i}}=\left\{a_{i}: D_{i} a_{i} \leqslant d_{i}\right\}$. A prior, this is a LP with uncountalnly infinite constraints. Can me solve it? Assume four simplicity sheet $U_{a_{i}}$ is lounzded \& plasille.

By duality, $\max _{a_{i}} a_{i x}^{T} D_{i} a_{i} \leq d_{i}=\min _{P_{i}} d_{i}^{\top} p_{i} D_{i}^{T} p_{i}=x$. But now, we havo $\min _{x} C^{\top} x$

$$
\begin{aligned}
& \forall i \in[m]\left[\begin{array}{c}
\min _{P_{i}} d_{i}^{\top} P_{i} \\
D_{i}^{\top} P_{i}=x
\end{array}\right] \leqslant b_{i} \quad \Longleftrightarrow \min _{\left.x, s_{i}\right\}} C^{\top} x \\
& \Rightarrow \begin{array}{l}
\min _{\left.x, s_{i}\right\}} c^{\top} x \\
\forall i \in[m] \quad d_{i}^{\top} p_{i} \leq b_{i} \\
\\
D_{i}^{\top} P_{i}=x
\end{array} \\
& p_{i} \geqslant 0 .
\end{aligned}
$$

(Ex) Prove the last equinalence.
Finally, we hane an LP \& can scolve rolust LPs with polyhedral uncertainity efficiently.
CAUTIONARY TALE: BILEVEL LPS
Generclly, LPS emluended insider other LPS is a resope for computational intractalility. We geet lucky alrone.

Geeneral Bidenel LP

$$
\begin{aligned}
& \max _{x} C^{\top} x+d^{\top} y \\
& \text { s.t. } A x+B y^{*} \leq f \\
& \quad y^{*}=\operatorname{argmax} y \\
& \quad \text { s.t. } C x+D y \leq g .
\end{aligned}
$$

Knapsack is NP-hard.

$$
\text { S.t. } \quad \sum_{i=1}^{n} a_{i} x_{i} \leq B
$$

$$
n_{i} \in\{0,1\} .
$$

We will enthed Knapsack in a lilevel LP to demoustrate that solning general hilenel LPS is NP-hard.

Integral ta Smitching Comtraints

$$
\begin{array}{cl}
\max & \sum_{i=1}^{n} a_{i} x_{i}-10^{100} \sum_{i=1}^{n} y_{i} \\
\text { s.t } \sum_{i=1}^{n} a_{i} x_{i}+10^{100} \sum_{i=1}^{n} y_{i} \leqslant B \\
y_{i}=\min \left\{x_{i}, 1-n_{i}\right\} \\
0 \leq n_{i} \leqslant 7
\end{array}
$$

(E2) Proune that of $\max _{i} a_{i} \leq 10^{100}$, then optima of seintiehing foomulation Knapsack as Bilinear LP

$$
\begin{aligned}
& \max \sum_{i=1}^{n} a_{i} x_{i}-10^{100} \sum_{i=1}^{n} y_{i} \\
& \text { s.t. } \sum_{i=1}^{n} a_{i} x_{i}+10^{100} \sum_{i=1}^{n} y_{i} \leq E \\
& 0 \leq x_{i} \leq 1 \\
& y_{i: n}=\operatorname{argmax} \sum_{i=1}^{n} y_{i} \\
& \text { s.t. } y_{i} \leq x_{i} \\
& y_{i} \leq 1-x_{i} .
\end{aligned}
$$ and knapsack cooncide.

APPLICATION TWO: TWO PLAYER ZERO SUM GAMES

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
	$-1,1$	$1,-1$	0,0

Let A lev a matrix of payoffs for the column player.
Io row player gees first, $\min _{i} \max _{j} A_{i j}$. If column player goes first, $\max _{j} \min _{i} A_{i j}$.
payoff of raw player, colum player note then sem to zero.
these are clearly not equal, ir. $+1 \neq-10$

Ion. If players cere permitted to choose randomized/ mined strategies. then corder of play is irorelenaent.
$\left[\begin{array}{l}\text { Vo } \\ \text { NEMAN }\end{array}\right] \min _{x \in \Delta} \max _{y \in \Delta} x^{\top} A y=\max _{y \in \Delta} \min _{x \in \Delta} x^{\top} A y_{0}$
Proof
Sketcher

$$
\begin{aligned}
& \min _{x \in D} \max _{y \in \Delta} n^{\top} A_{y} \geqslant \max _{y \in D} \min _{x \in \Delta} x^{\top} A y \\
&=\min _{x \in B} \max _{j}\left(A^{\top} x\right)_{j} \quad=\max _{y \in A} \min _{i}(A y)_{i}
\end{aligned}
$$

$$
P=\min _{z, x \in \Delta} z
$$

$$
\text { s.t. } z \mathbb{1} \geqslant A^{\top} x
$$

$$
\begin{array}{rl}
D=\max _{\omega, y \in \mathbb{1}} & w \\
& \text { sit. } \\
w \mathbb{1} \leq A y .
\end{array}
$$

Fecosille: table any $x \in \Delta$

$$
\& z \geqslant \max _{i, j}\left|a_{i j}\right|
$$

Feasible: take any $y \in \Delta$

$$
\& \omega \leqslant-\max _{i, j}\left|\alpha_{i j}\right| .
$$

Therefore, by strong duality, enough Aw prone P\&D aridiche
(Ex) Verily this mia explicit computation o More subtle point: P \& D are autcomatocally duals sine this is exactly how we derive drabs

References:
Computing duals
Mechanically -Section 6.2 in Matousek; also see this Proofs of Strong Duality-

Lecture 5 from Amir Ali's course notes are the tidiest; also discusses robust RPs
Section 3.3 in Gerard's book provides a direct proof via FM (Beyond this course) More on robust programs by Nemirovski
Zero sum games- Section 5.2.5 in Boyd
Hardness of Bilevel RPs- this paper

LECTURE 6: SIMPLEX
Let us recall the BFS enumeration algorithm from CEOMETRY. The simplex algorithm searches for an optima BFS in a local manner. Questions that arise:
(1) What's this notice of locality?
(2) Why does local search lead to optimality?
(3) How tee even celtcim, initial BFS? Recall that clerking for feasilility is calmest as hard as aptinization itself.
Answer 1. Recall that each $B \subseteq[n]$ of size in' can coerrugsond to at most one BFS in $\{A n=b, x \geqslant 0\}_{0}$. We can draw a graph our B's that yield a (feasible) BFS.

$$
B-B^{\prime} \text { iff }\left|B \cap B^{\prime}\right|=m-1 \text {, i.e., if }
$$

$B \propto B^{\prime}$ share all lit one coordinate.
Roughly, simpler searches for letter (or not worse) reighhars in this graph.
Nate multiple B's might correspond to same BFS. This creates complications later. Te steep this:
NON-DEGENERACY: All BFSS have m-non-zere coordinates, or equinoelently, each feasible B produces

GEOMETRIC GRAPH a unique BES.
$V-V^{\prime}$ are connected iff there are connected le an edge, il., a 1-dimensional fare.

$$
\begin{gathered}
\text { Under non-degeneray, } \begin{array}{c}
\text { ALGFBRAC } \\
\text { GRAPH }
\end{array}=\begin{array}{c}
\text { GEOMETRIC } \\
\text { GRAPH }
\end{array} .
\end{gathered}
$$

Creuerolly, Geountric Crops is an edge contraction of the Algebraw graph, formed by collapsing B's that dead too the same BFS. By its nature, simplex performs local
seark oner the algeltraic graph. Bat loecel searnh cover the geametric graph is easier the analyze.
cAnswer Z_{0} In shart, ly cheating. Construct an aunillicery LP for which a BFS is lasy to geess.

$$
\left.\begin{array}{cc}
\text { ORIGINAL } \\
L P
\end{array}\right) \begin{gathered}
\min C^{\top} x \\
A x=b \\
x \geqslant 0
\end{gathered} \quad\binom{A \cup x I L L I A R y}{L P}
$$

$$
\begin{aligned}
& \min \underline{L}^{\top} s \\
& A x+s=b \\
& x \geqslant 0 \\
& s \geqslant 0
\end{aligned}
$$

Without los of genervolty, $b \geqslant 0$.
Else, flip sigu.

OBSERVATION: Original $L P$ is feesille \Leftrightarrow Aumilliary $L P$'s OPTimum is D.
gdea: Run simplen on Aun LP storting wish $x=0, s=b$ (which is a BFS). If opt >0 or unloumded, original LP is infeasilile. Else, we end up with a BFS foor original $L P$ the run seimplen on (mayhe after using chcesis empansion from LRCTURE 3).
Answer 2: Ckay, this is a liit innoloned /amnoying. ASSOMING NON-DEGENERACY, SIMPLEX:

1. start with a BES.
2. Cherk if there's a reighhoering BFS with sterictly better value. If $s e$, then mone to if \& repeat. Else, declare current BFS is optemal.
Consider any neighther of B with $B F S S^{\prime} n$, B^{\prime} with $B F S y$ Let $B^{\prime}-B=\left\{i 3, d_{B}=y_{B}-x_{B}\right.$. then, $A y=A_{B}\left(x_{B}+d_{B}\right)+a_{i} y_{i}=b$ or $A_{B} d_{B}+a_{i} y_{i}=0$, wher a_{i} is $i^{\text {th }}$ column of A_{0} Alsee.

$$
C^{\top} y-C^{\top} x=c_{i} y_{i}+C_{B}^{\top} d_{B}=\left(c_{i}-C_{B}^{\top} A_{B}^{-1} d_{i}\right) y_{i}
$$

OBSERVATION: $C^{\top} x \leq \min _{y \in N \in \operatorname{NelanOBR}}^{\substack{ }} C^{\top} y$
for B geverating $B F S_{n}$.

$$
\forall i \in \bar{B} .
$$

where y is a BFS foor B^{\prime} such $B^{\prime}-B=\{i\}$ 。

$$
\gg C_{i}-C_{B}^{\top} A_{B}^{-1} a_{i} \geqslant 0 \quad \forall i \in[n] \text { sine } y_{i} \geqslant 0 .
$$

Defn: $i^{\text {th }}$ reduced cost at B
$\forall i \in[n]$ since $y_{i}>0$.
for non-degeherate $L P$ s
Here, we are using that $\forall i \in B, C_{i}=C_{B}^{\top} A_{B}^{-1} a_{i}=C_{B}^{\top} e_{i}$, using definition of matrix inverse.
THEOREM : Define $\bar{C}^{\top}=C^{\top}-C_{B}^{\top} A_{B}^{-1} A$ tee lee the reduced cost at B o then, ($1, \bar{C} \geqslant 0 \Rightarrow B E S n$ with B is optional; (2) $B F S n$ at B is optimal and $L P$ is now-degenerate $\Rightarrow \bar{C} \geqslant 0$.

PROOF: Let's start wish (2). If x is optimal, it must le le at least os good as ito neighbors. Then for non degenerate $L P_{S}, \bar{C} \geq 0$, by the preniaens celesernation. For (1), will certify optimality by constructing a dual feasible soluticen. $\bar{C} \geq 0 \Longleftrightarrow C^{\top} \geqslant C_{B}^{\top} A_{B}^{-1} A=Y^{\top} A$, where $y^{\top}=C_{B}^{\top} A_{B}^{-1}$, or $A^{\top} y \leq C$. Thus y is a dual feasible solution. Yet, $b^{\top} y=C_{B}^{\top} A_{B}^{-1} b=C_{B}^{\top} x_{B}=C^{\top} x_{0}$ Hence, ley weak duality, ' x ' is optimal.
COROLARY: For non-denegrate LPS, simplex with strictly letter neighbor rule terminates in a finote number of steps and reaches an optimum.
This corcellary is immediate sine non-zerce improvement at each step implies no nerten /BFS is nisited twice, and recall that there are at most $\binom{n}{m}$ off them o The last theorem guarantees optimality at stopping. SIMPLEX FOR POSSIBLY DEGEMERATE LP 。

1. Start at some BFS n with have B.
2. Check if $\bar{c} \geqslant 0$. If so, declare optimality. Ese,
choose a neighhooring nerten B^{\prime} such $B^{\prime}-B=\{i\}$ such $\bar{C}_{i}<0$, using a PIVDTING RULE. Mone to it; repeato
Now, that me have gimen up the innericent of strict impronement ewery retep, theri's the poessiliuliity that simplen ceyles (misits the same hase B twicee) cuod newer torminates. Recall that asking for strict impronement (and stopping when it is not possille) impugns an the Correctines/epptimality; that's wcerse. Many natural pinating rules foor simplen cycle.
BLAND'S When at a hase B, choose the senallest indew RULE. i for which $\bar{C}_{i}<D_{j}$, mone to B^{\prime} suh $B^{\prime}-B=\{i\}_{\text {. }}$
THEOREM. Simplen with Bland's eule does noet cycle, and hevel, terminates at an optinum in fimite stepso
We will ncet prone this in interest of time. Mayhe in a future iteration of this comerse. Generally, suh lenicographic (not innariant to naming / order of indening) rule prouide a consistent may of tie-lrreaking.
COMMENTS OF RUANING TIME OF SIMPLEX

* A reasonalle algoritcm for L_{S} arising in practice. Mined evidance on if cycling is a real concern.
* Mary many pinotong eules require an enponentral rumber of rteps in the morst-case.
KLEE-MINTY cuhe \& naricents core a comon sourue of such hard enamples.
* Multiple decades-long push te find a pinceting rule thent results in polynomicel complesityo
Q. It thio enen true foer an "ommiscient" pinoting encle?
For a polythope P, let Gp le its BFS graph. HIRSCA CONJECTORES. diam $\left(C_{M P}\right) \leqslant n$-d where P is a d-dimens$\xlongequal[(1957)]{\text { ConjECTORES: }}$ ional polyhedron mith n constraints.
True when $d \leqslant 3$
Jrue when $n-d \leq 6$.
COUNTEREXAMPUE. I a counter-enample tee the
(2010 SANTOS) conjecture in $d=43$.
(Kalai-Klictiman) $\operatorname{diam}\left(G_{p}\right) \leq 2 n^{\log _{2} d+1}{ }^{\circ}$
OPEN QUESTION $\operatorname{dian}\left(a_{p}\right) \leq \operatorname{poly}(n, d)$?
* Concession: Mayle moest-case complenity is really had, lut perhapo anerage-case is good. Caneat: noticen of "average" in average-case is tricky. For enample. an eadly result of this kind preened thoet if $\left(a_{i}, b_{i}\right) \sim D$ are sampled imdependently fenem seenc distriluticen D satisfying equipodal syenmetury, i.e. if $\operatorname{Pr}_{D}((a, b))=\operatorname{Pr}_{D}((-a,-b))$, then with n surh constraints in d dimersicens, simplen can $\max C^{\top} x$ s.t. $A x \leq b$ takes polgnomially many steps mish high probalielity. This is difficeut to judge the significance of sime for $m>2 n$, sulv LPs are infeasille woth high prodsadwlity, for most (non-degeneratie) distevilutions.
* SMOOTHED ANALYSIS: $g_{n} \sim 2002$, Lpeilman \& Jung shamed that given any (A, b), with
$\widetilde{A}=A+$ random noise of size σ
$\widetilde{b}=b+$ reunion neeise of size σ,
the simplex algorithon takes pay $\left(n, d, \frac{1}{\sigma}\right)$ steps an max $C^{T} x$. Neetice that although this is a statement about random instances, the randomness is very "localized". Sur mode of analysis lectueen worst \& awerage-cases is called SODOOTHED ANALYSIS, and has proved useful in stedying efficiency of algooristuns in leyoud moost-case settings more generally.

References:
Finding an initial BFS- page 70 in Matousek
Simplex algorithm
Sections 3.1 and 3.5 in Bertsimas
2. Section 11.1 in Schrijver; also proves termination of Bland's rule (Beyond this course) Survey on Hirsch Conjecture
(Beyond this course) Smoothed analysis- Daniel Dadush's talk

LECTURE 7: CENTER OF MASS
For any compact $K \subseteq \mathbb{R}^{n}, \operatorname{veel}(K)=\int_{K} d x, \operatorname{com}(K)=\int_{K} \frac{x d x}{\operatorname{vel}(K)}$. Note $\operatorname{com}(k)=\underset{\substack{x \sim \text { unify } \\ \text { on k }}}{\mathbb{E}}[x]$.
Jake any $\min _{x \in K} C^{T} x$; this can represent any conmen prog: $x \in K \longrightarrow$ compact, full-dimensieenal, conner.
ALGORITHM:

1. Let $K_{1}=K$.
2. For $t=1 \ldots T$

compute $x_{t}=\frac{1}{\operatorname{vel}\left(K_{t}\right)} \int_{K_{t}} n d x$.
Jake $K_{t+1} \leftarrow K_{t} \cap\left\{x: C^{T} x \leqslant C^{\top} x_{t}\right\}$ 。
3. Output $\bar{x}=\operatorname{argmin} C^{\top} x_{0}$

$$
x \in\left\{x_{1} \ldots x_{T+1}\right\}
$$

CLAIM. If $\max _{x, y \in K} C^{\top}(x-y) \leqslant F$, then $C^{\top} \bar{x} \leq \min _{x \in K} C^{T} x+F\left(1-\frac{1}{e}\right)^{T / n} 0$
Ir particular, if $T \geqslant \eta \log \frac{F}{\varepsilon}$, then we must he ε-optimal. GRUNBAUM's For any conner, compact K, with com n_{0}, LEman.

$$
\forall c \in \mathbb{R}^{n}, \quad \frac{\operatorname{vel}\left(k \cap\left\{x: c^{T}\left(x-x_{0}\right) \leqslant 0\right\}\right)}{\operatorname{val}(k)} \geqslant \frac{1}{e}
$$

In words, any half-space through the center of mass of a convene body rejects at-least "l fraction eff the nolvene. Wroth this interpretitation, the CoM algorithm has the same flavor as binary search.
PROOF: Let $x^{*}=\operatorname{argmin} \min _{x \in k}^{\top} C^{\top}$. Then, take $x_{\varepsilon}^{*}=\left\{(1-\varepsilon)^{*}+\varepsilon x: x \in \mathbb{R}\right.$
cumin. Now, wee $\left(x_{\varepsilon}^{*}\right)=\varepsilon^{n} \operatorname{val}(k) . \quad \begin{aligned} & \text { cut } \\ &=(1-\varepsilon) x^{*}+\varepsilon k_{0}\end{aligned}$
thee, $X_{\varepsilon}^{*} \leq K=K_{1}$, by coinnenity of K_{0} $\max _{x \in X_{\varepsilon}^{*}} C^{T} x \geqslant \min _{x \in \mathbb{K}} C^{T} x+\varepsilon F$, by consitructicen of X_{ε}^{*}.

In moods, X_{ε}^{*} is a small set of points, all moth geod olgiectone valuo. Weill prone that although initivally completely inside K_{1}, scene of it must fall outside K_{t} for large enough t. Whenever this first happens, n_{t} must he hatter than some $n \in X_{\varepsilon}^{\star}$. Lo see his:

$$
\begin{aligned}
\operatorname{vel}\left(K_{t+1}\right) & \leqslant\left(1-\frac{1}{e}\right) \operatorname{val}\left(K_{t}\right) \quad \text { Grunbaum } \\
& \leqslant\left(1-\frac{1}{e}\right)^{t} \operatorname{vel}\left(K_{1}\right)_{0} \quad \text { By repetition. }
\end{aligned}
$$

Now, set $\varepsilon>\left(1-\frac{1}{e}\right)^{T / N}$. Then, $X_{\varepsilon}^{*} \subseteq K_{1}$, yet $\operatorname{vel}\left(K_{T}\right)<\operatorname{vall}\left(x_{\varepsilon}^{*}\right)$. Heme, $\exists t \in[T], x_{\varepsilon}^{*} \in X_{\varepsilon}^{*}$ such $x_{\varepsilon}^{*} \in K_{t}, x_{\varepsilon}^{*} \notin K_{t+10}$ By construction, $C^{\top} x_{t}<C^{\top} x_{\varepsilon}^{*} \leq \min _{x \in K} C^{\top} x+\varepsilon F_{0}$
In the rest of this neete, ne will prone Grunhaunis lemma. OBSERVATION: Say ($n-1$)-dimension volume of a sphere is $c_{n-1} r^{n-1}$.

$$
\begin{aligned}
& \operatorname{val}(K)=\int_{0}^{R} C_{n-1} r^{n-1} d r=\frac{C_{n-1}}{n} R^{n} \\
& \operatorname{Com}(K)=\frac{n}{C_{n-1} R^{n}} \int_{0}^{R} C_{n-1} r^{n} d r=\frac{n}{n+1} R_{0} \\
& n-\operatorname{coova} d \\
& \rightarrow \operatorname{val}\left(K \cap\left\{x_{1} x_{1} \leqslant \operatorname{com}(R)\right\}\right) \\
&=\int_{0}^{\frac{n}{n+c o o n d}} C_{n-1}^{n} r^{n-1} d r=\frac{C_{n-1}}{n}\left(\frac{n}{n+1}\right)^{n} R_{0}
\end{aligned}
$$

$$
\frac{\operatorname{vel}\left(R^{-}\right)}{\operatorname{val}(k)}=\left(\frac{n}{n+1}\right)^{n} \geqslant \frac{1}{e}
$$

In some sense, cone is the nowerst case for Grunhaum.
Although, this is an example, me will ese it as a proof strategy. We will rede geveral conner hoodies to (right) cones.

BRUNN
MINrowsR1
For non-emptey compact sets $A, B \leq$
R^{n} , inequality

$$
\operatorname{nol}(A+B)^{1 / n} \geqslant \operatorname{rel}(A)^{1 / n}+\operatorname{vel}(B)^{1 / n}
$$

PROOFF. In the $N W$, you have proven this for the case when $A \& B$ are anis-aligned (hyper) rectangles. We will entend this to whim $A \& B$ are unions of digjceint culveids. By limiting argument, this extends to compact hoodies. Our induction hypothesis is that the stated Inequality is tome when $A \& B$ contain ' n ' disjoint culsoids in total. Velure is translation invariant. Hence, shift the $n_{1}=0$ plane so that at least one cuboid lies entirely alrene in A.

Translate B along x_{2} se that $\frac{\operatorname{vel}\left(A^{+}\right)}{\operatorname{vel}(A)}=\frac{\operatorname{vel}\left(B^{+}\right)}{\operatorname{vel}(B)}$; such translation always exists due to Int. Value Heerem, Notice that $\left(A^{+}+B^{+}\right) \cap\left(A^{-}+B^{-}\right)=\varnothing$ sine $x_{1}=0$ separates them, yet $\left(A^{+}+B^{+}\right) \cup\left(A^{-}+B^{-}\right) \subseteq A+B$. Hence, we hance

$$
\begin{aligned}
\operatorname{val}(A+B) & \geqslant \operatorname{val}\left(A^{+}+B^{+}\right)+\operatorname{val}\left(A^{-}+B^{-}\right) \\
& \geqslant\left(\operatorname{val}\left(A^{+}\right)^{1 / n}+\operatorname{val}\left(B^{+}\right)^{1 / n}\right)^{n}+\left(\operatorname{vel}\left(A^{-}\right)^{1 / n}+\operatorname{vel}\left(B^{-}\right)^{1 / n}\right)^{n} \\
& =\left(\operatorname{val}\left(A^{+}\right)+\operatorname{val}\left(A^{-}\right]\right)\left(1+\left(\frac{\operatorname{val}(B)}{\operatorname{val}(A)}\right)^{1 / n}\right)^{n} \\
& =\left(\operatorname{val}(A)^{1 / n}+\operatorname{val}(B)^{1 / n}\right)^{n} .
\end{aligned}
$$

COROLLARY: $\operatorname{val}\left(K \cap\left\{x_{1}=\alpha 3\right)^{\frac{1}{n-1}}\right.$ is coneane in α for any compact, cowmen set $K \subseteq \mathbb{R}_{0}^{n}$ \rightarrow this is $(n-1)$-dimensional relume.

PRDOF: Let $K_{\alpha}=K_{\wedge}\left\{x_{1}=\alpha\right\}$. Note that $\lambda K_{\alpha}+(1-\lambda) K_{B} \subseteq K_{\lambda \alpha+(1-\lambda) B)}$ $\forall \alpha, B \in \mathbb{R}, \lambda \in[0,1]$ sire K is commend. Then,

$$
\operatorname{val}\left(K_{\lambda \alpha+(1-\lambda) B}\right)^{\frac{1}{n-1}} \geqslant \lambda\left(\operatorname{val}\left[K_{\alpha}\right)\right)^{\frac{1}{n-1}}+(1-\lambda)\left(\operatorname{vol}\left(K_{B}\right)\right)^{\frac{1}{n-1}} .
$$

Now, we are ready te complete Grunliaumis lemma.
PROOF OF Without loss of generality, we can orient eur GRUNBAUM'S LemMA.
 Replace every slice of K along x_{1} anis with a $(n-1)$-dimensicuna sphere of equal $(n-1)$-dimensional volume. This step preserves volumes of hath sections on either side of $n_{7}=0 ;$ also x_{1} coordinate of ceenter-of-mass stays the same. Do, it suffices to establish the claim for thin new hody. $K_{+}=K \cap\left\{x: x_{1} \geqslant 0\right\}$. First note, this new hody is conmen, $K-K \cap\left\{x: x_{1} \leq 0\right\}$. Since we didint modify vol $\left(K \cap\left\{x_{1}=\alpha\right\}\right)$ and noel $\left(K \cap\left\{x_{1}=\alpha\right\}\right)^{\frac{1}{n-1}}$ was concane in α feer the old (aver hence, the new) body.
Replace K^{+}with a cone with the same spherical case as K^{+}, see that the cone and K^{+}are equi-nolume. Extend this cone in the negative n_{1}-region till this extension has nolune equal the seel $\left(K^{-}\right)$, again always possilde dy intermediate value theorems. These operations are volume preserving, lust what happens to the center of mess? The Claim is shat it can only move rightwards. In other noercls, this transformation increases the n_{1} coorelinate of center of mass from to something neen-negatione. This is once again a consequence of concamity of val $\left(x_{1}\left\{x_{1}=\alpha\right)^{\frac{1}{n-1}}\right.$ in α. Post this transformation, we have a petfert
cone with nou-negatine n_{2} coordinate of COM. Hence,

$$
\frac{\operatorname{val}\left(K_{+}\right)}{\operatorname{val}(K)}=\frac{\operatorname{val}\left(K \cap\left\{x_{1} \geqslant 0\right\}\right)}{\operatorname{vel}(K)} \geqslant \frac{\operatorname{val}\left(K \cap\left\{x_{1} \geqslant x_{1}^{c o m}\right\}\right)}{\operatorname{val}(K)} \geqslant \frac{1}{e},
$$

where $x_{1 \geqslant 0}^{\text {com }}$ is x_{2} - coordinate of com.

moses mono rightmeerd. Heme, this transformation shifts COM rightward.
$\left.\left.\begin{array}{c}((\text { FORmAL proof by constructing a } \\ \text { transpeart map. }\end{array}\right)\right)$
THE TROUBLE WITH CENTER OF MASS ALGORITHM Computing COM of a general coumen hood given a polyhedral description is \#P-hard (ill. quite hard). But, nevertheless it is passible tee get an ε - for point tee COM in polynomial $\left(\right.$ in $\left.\frac{1}{\varepsilon}, m, n\right)$ time. This alselus the CoM algorithm somewhat. But, newertheleds even the ε-appronimaticen algorithm is almost as tedious as solving a LP. We mil however see a letter algorithm, in fact the first poly-time algorithm for sedning LPS, inspired by the COM celycorithm neat lecture

References:

1. Center-of-mass Algorithm Section 2.1 in Bubeck
2. Sections 3.4 and 1.7 in Lee-Vempala
3. Proofs of the Brunn-Minknowski and Grunbaum's inequality
4. Chapter 2 in Vempala; also proves Grunbaum
5. Lecture 13 in Kelner; also proves Grunbaum
6. Section 9.1 in Tkocz
7. Lecture 5 in Ball-a good intro to convex geometry; proves Prekopa-Leindler, a generalization of BM
8. (Beyond this course) Computing ~COM in poly time Bertsimas-Vempala

LECTURE 8: ELLIPSOID
The ellipsoid method can le thought of as a variant of the center-of-mass method, lat one implementable in polynomial time. It mas the first pron ally poly-time algorithm feer LPG.
ASSUMPTION: K is conner, compact and $r B_{2} \subseteq K \subseteq R B_{2}$ where $B_{2}=\left\{\alpha:\|x\|_{2} \leqslant 1\right\}$ 。
ALGORITHM

1. Initialize $\varepsilon_{1}=R B_{2}$.
2. For $t=1 \ldots . \cdot T$
3. Let x_{1} he the center of ε_{1}.
4. gs $x_{t} \in K$? (MEMBERShIP ORACLE)

5. If yes, construct an ellipse ε_{t+1} contoroning

$$
\varepsilon_{t} \cap\left\{x: c^{\top}\left(x-x_{t}\right) \geqslant 0\right\}_{0}
$$

4. If $n \theta$, ask for a half space ω_{t} such that $\forall x \in K, w_{t}^{\top}\left(x-x_{t}\right) \geqslant 0$. Hhs, all of K (SEPARATOR is contained in $\omega^{\top}\left(x-x_{t}\right) \geqslant 0$. Construct an ORACLE) ellipse ε_{t+1} containing $\varepsilon_{t} \cap\left\{x: w_{t}^{\top}\left(x-x_{t}\right) \geqslant 0\right\}$.
IMPLEMENTATION
If $K=\{x: A x \leq b\}$, then $x_{t}{ }^{\circ} \in K$ can be answered in linear time ley checking all constraints one-by-ane $a_{i}^{\top} x_{t} \leqslant b_{i}$. If $x_{t} \notin K$, then $\exists i \in[m]$ such $a_{i}^{\top} x_{t}>b_{i}$. But $\forall x \in R$, $a_{i}^{\top} x \leq b_{i}$, implying $a_{i}^{T}\left(x-x_{t}\right) \leqslant 0 \forall x \in K$. This gives us the required separative hyperplane.
IMPORTANT NOTE: We'ne demonstrated that for LBs with polynomially many constraints, MEMBERSMID \& SEPARATION ORACUES can be implemented efferciectly. However, this is not the only case mhen this is possible. For
certain structured LIs with empeenentrally/imfinitely many constraints, ellipsoid is stol a poly-time alyarith as long as SEPARATION/MEM BERSAIP QUERIES are efficiently answer able.
Analysis
Volume reduction For any ellipsoid Eos with center $n_{0} \in \mathbb{R}^{n}$, LEMMA. and vector ω_{0}, we can effeficientily construct an ellipsoid ε_{1} containing $\varepsilon_{0} \cap\left\{x: \omega_{0}^{\top}\left(x-x_{0}\right) \geqslant 0\right\}$ with $\operatorname{val}\left(\varepsilon_{1}\right) \leq \operatorname{val}\left(\varepsilon_{0}\right) e^{-1 / 2(n+1)}$.
CLAIM. Let \bar{x} le a feasible peeing in $\left\{x_{1} \ldots x_{T}\right\}$ aching the minimum celyestine valve. Then

$$
\begin{aligned}
& \quad C^{\top} \bar{x}-\min _{x \in K} C^{\top} x \leqslant \frac{F R}{r} e^{-T / 2(n+1) n} \text {, where } \\
& F=\max _{x, y \in K} C^{T}(x-y)
\end{aligned}
$$

Hence, as long as $T \geqslant 2 n(n+1) \log \frac{F R}{q \varepsilon}$, we must le ε-optional. Notice that this is slower Shan Com ley a factor of n, because nolume reducticen $\approx 1-\frac{1}{2(n+1)}$ in each step, instead of a coenstient. This is the price ellipsoid method pars for efficient implementaliility PROOF of We will fallow the same recipe as that for com.
CLAIM

Let $x^{*} \in \arg \min _{x \in K} C^{T} X$, and $X_{\varepsilon}^{*}=(1-\varepsilon) x^{*}+\varepsilon K \subseteq K_{\text {。 }}$
Now, we have $\operatorname{val}\left(x_{\varepsilon}^{*}\right) \geqslant \operatorname{val}\left(\varepsilon r B_{2}\right)=C_{n}(\varepsilon \varepsilon)^{n}$ for some C_{n} such that $\operatorname{vol}\left(B_{2}\right)=C_{n}$. Also, we hame

$$
\max _{x \in X_{\varepsilon}^{k}} C^{\top} x \leqslant C^{T} x^{*}+\max _{x \in X_{\varepsilon}^{*}} C^{T}\left(x-x^{*}\right) \leqslant C^{T} x^{*}+\varepsilon F .
$$

By nolume reduction lemana, with repeated applications, we get $\operatorname{val}\left(\varepsilon_{T+1}\right) \leq \operatorname{val}\left(\varepsilon_{1}\right) e^{-\frac{T}{2(n+1)}}=C_{n} R^{n} e^{-\frac{T}{2(n+1)^{\circ}}}$

Chase $\varepsilon>\frac{R}{r} e^{-\frac{T}{2 n(n+1)}}$. Thu since $\operatorname{val}\left(\varepsilon_{T+1}\right)<\operatorname{val}\left(X_{\varepsilon}^{\pi}\right)$, $\exists t, n_{\varepsilon}^{*} \in X_{\varepsilon}^{*}$ such that $x_{\varepsilon}^{*} \in \varepsilon_{t}, x_{\varepsilon}^{*} \in \varepsilon_{t+1}$. Further, note that this can only happen on the YES branch, because all existing feasible points are retained on the NO branch. Hence, $c^{\top} x_{t}<C^{\top} x_{\varepsilon}^{*} \leqslant C^{\top} x^{*}+\varepsilon F$.
Now, we will finish up the proof of the nollmne reductica lemma. Note that this lemma was cencial fer the (sub)-optimality result. Also, such nicertas dent work for some simpler shapes.

Smallest circle containing this hemiciorce is the original circle itself.
No volume Reduction for cioule method

NO VOLUME REDUCTION. for rectangle method

PROOF OF VOLUME Consider a simpler ease when we start with $\xlongequal{\text { REDUCTiON LEMMA. }}$. the unit heal $B_{2}=\left\{x:\|x\|_{2} \leqslant 1\right\}, x_{1} \geqslant 0$ is halfppau.

Any ellipse can le written as

$$
\left\|x-x_{0}\right\|_{H_{0}^{-1}}^{2}=\left(x-x_{0}\right)^{\top} H_{0}^{-1}\left(x-x_{0}\right) \leqslant 1
$$

where x_{0} is the center, the eigen vectors of H_{0} are its primnipal ans with lengths $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}$ where λ_{i}^{\prime} 's are the eigenvectors of H_{0}. Thinks of it as a generalization of $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}} \leq 1$. Clearly, an ellipse with principal axes of lengths $\sqrt{\lambda_{1}}, \cdots \sqrt{\lambda_{n}}$ has volume $=C_{n} \sqrt{\lambda_{1} \ldots \lambda_{n}}=C_{n} \sqrt{\operatorname{det}\left(H_{0}\right)}$. Strettehing a lady along a single axis by $2 x$, increases nolume by $2 x_{\text {. }}$

Each nolume elemeest doechles in volurne while stretching x-anis ley $2 x$.
Nain, hack to ε_{1}. By symmetuy, we take $n_{1}=t e_{1,}$ as the center of ε_{1}. This ellipoe teeuches e_{1} and $B_{2} n\left\{e_{1}=0\right\}$. Sa, our ansat is $H=a e_{1} e_{1}^{\top}+b\left(I-e_{1} e_{1}^{\top}\right)$. This is an eigen-walue decomposition. $H^{-1}=\frac{1}{a} e_{1} e_{1}^{\top}+\frac{1}{b}\left(I-e_{1} e_{1}^{\top}\right)$. $\mathcal{L} \theta^{-}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { eigen-walue decomposeltions } \\
\qquad \begin{array}{l}
(1-t)^{2} \\
\text { valume }\left(\varepsilon_{1}\right)
\end{array}=C_{n} \sqrt{a b^{n-1}}=C_{n} \frac{(1-t)^{n}}{(1-2 t)^{\frac{n-1}{2}}}
\end{array}
\end{aligned}
$$

Manimizing this foer $t, \frac{(1-t)^{n-1}}{(1-2 t)^{\frac{n-1}{2}}} n=\frac{(1-t)^{n}}{(1-2 t)^{\frac{n-3}{2}}} \frac{n-1}{2} 2$

$$
\begin{aligned}
& \Rightarrow \frac{n}{n-1}=\frac{1-t}{1-2 t} \Rightarrow \frac{1}{n-1}=\frac{t}{1-2 t} \Rightarrow t=\frac{1}{n+1} \cdot \\
& \begin{aligned}
a=(1-t)^{2} & =\left(\frac{n}{n+1}\right)^{2}, b=\frac{\left(\frac{n}{n+1}\right)^{2}}{\frac{n-1}{n+1}}=\frac{n^{2}}{n^{2}-1} \cdot \\
\text { valume }\left(\varepsilon_{1}\right) & =c_{n} \sqrt{a b^{n-1}}=c_{n}\left(\frac{n}{n+1}\right)\left(1+\frac{1}{n^{2}-1}\right)^{\frac{n-1}{2}} \\
& \leq c_{n} e^{-\frac{1}{n+1}} e^{\frac{n-1}{2\left(n^{2}-1\right)}}=e^{-\frac{1}{2(n+1)}} \text { valume }\left(\varepsilon_{0}=B_{2}\right) .
\end{aligned}
\end{aligned}
$$

using $1+x \leqslant e^{x} \quad \forall x \in \mathbb{R}$ 。
Note that $\frac{\text { velume }\left(\varepsilon_{1}\right)}{\text { velume }\left(\varepsilon_{0}\right)}$ ismaribent under oreetations, (since all onolumes are)
leat alsee under strecthing of any anes as we have seen. This $\frac{\text { nolume }\left(\varepsilon_{1}\right)}{\text { volume }\left(\varepsilon_{0}\right)}$ is innariant under any innertilile coordinate tremsformation, sin coordinate tramsformation, since any innertille linear map $A=U \Sigma V^{\top}$ for corthogonal U, V
and diagonal Σ with positive entries by singular value decomposition. Thus over relume reduction result holds storting with any ellipse and half-spare.
(Ex) Verify that $\varepsilon_{1} \geq \varepsilon_{0} \cap\left\{x_{1} \geqslant 0\right\}$.
Finally, although unnecessary for our proof, note we have also constructed the senalhest ellipse sulyect to the containment requirement; our upper choumds on its volume might have been a hit loose theargh.
For computationally explicit implementation, we entend this construction to the general case, i. e_{0}, $\varepsilon_{0}=\left\{x:\left\|x-x_{0}\right\|_{H_{0}^{-1}}^{2} \leq 1\right\}$, well construct $\varepsilon_{1} \supseteq \varepsilon_{0} n\left\{x: w^{\top}\left(x-x_{0}\right) \geqslant 0\right.$. $X \underset{y=H_{0}^{-1 / 2}\left(x-x_{0}\right)}{\stackrel{x}{2}=H_{1}^{1 / 2} y+x_{0}} Y$ $g_{n} y$-spare, $\varepsilon_{0} \circ\left\{y:\|y\|_{2}^{2} \leqslant 1\right\}$ 。 $\omega^{\top}\left(x-x_{0}\right) \geqslant 0 \Longleftrightarrow\left(H_{0}^{\prime \prime} \omega\right)^{\top} y \geqslant 0$
I_{θ} make it a unit $\begin{gathered}\text { vector 。 }\end{gathered} \Longleftrightarrow \frac{\left(H_{0}^{1 / W}\right)^{\top} y}{\longrightarrow\|W\|_{H_{0}}} \geqslant 0$

$$
\begin{aligned}
& \varepsilon_{1}=\left\{y:\left\|y-\frac{1}{n+1} \frac{H_{0}^{1 / 2} w}{\|w\|_{H_{0}}}\right\|_{\left.\left(\frac{n+1}{n}\right)^{2} \frac{H_{0}^{1 / 2} w w^{\top} H_{0}^{\prime \prime 2}}{\|w\|_{H_{0}}^{2}}+\frac{n^{2}-1}{n^{2}}\left(I-\frac{H_{0}^{1 / 2} w w^{\top} H_{0}}{\|w\|_{H_{0}}^{2}}\right)\right\}}\right. \\
&=\left\{x:\left\|x-x_{1}\right\|_{H_{1}^{-1}}^{2} \leq 1\right\} \text {, where } \\
& x_{1}=x_{0}+\frac{1}{n+1} \frac{H_{0} w}{\|w\|_{H_{0}}}, H_{1}=\left(\left(\frac{n+1}{n}\right)^{2} \frac{w w^{\top}}{\|w\|_{H_{0}}^{2}}+\frac{n^{2}-1}{n^{2}}\left(H_{0}^{-1}-\frac{w w^{T}}{\|w\|_{H_{0}}^{2}}\right)\right)^{-1}
\end{aligned}
$$

References:
Ellipsoid algorithm
Section 2.2 in Bubeck
(Beyond this course) Applying ellipsoid to large LPs- Chapter 3+ in GLS

LECTURE 9: REGRET
STORY SO FAR...

EXPERTS SETTING

$$
t=1 \cdots \cdot T
$$

' N ' experts male recommendations $\{ \pm 1\}$ to the learner. Learner chooses an expert tee fellow, say $i_{t} \in[N]$.
Adversary choose losses $\{0,1\}$ for each recommendation, (mure loess is had.)
Repeat
Assumption \exists an expert who is perfect, on all days FOR Now. incurs $\&$ loss; learner doesint know which ono.
Q. What strategy should the learner follow the minninige her cumulation number of mistakes?
NAIVE STRATEAY: Follow friend i till they make a mistake. If /when they do, start following friend $i+1$.
Up pen each of the learners mistakes, one expert is eliminated. Hence, \# mistakes for lecorner (or cumulative loss) $\leqslant N-1$ in the worst-case. But we can dee much letter.
SURVIVING MAJORLTY: Earl day take a majority nate among all surnining experts. At the conclusion of the day, eliminate these whee made mistakes.
Every time the learner makes a mistake, $n / 2$ of the expert pool is eliminated. Can only happen see many tines.

Hence, \# mistakes $\leqslant \log _{2} N$. This is an exponential improvement! Fantastic! But me mould like tee get rid of the realizalility / perfect expert assumption. Natural generalization is te initially assign each expert scene credibility that goes down, lat desist become zero like before, when the experts make mistakes. this works toe an intent, lat comes up short against the following harrier.
(Ex) Dry to produce an upper hound con number of mistakes by habfing the credilulity of a wrong expert in each roound \& trekking meighted majority. CLAIM: For any strategy* for the learner, there enists a worst-case assignment of losses guaranteeing the learner makes AT LEAST twice the number of mistakes for the lest expert.
PROOF. Jake 2 experts- A predicts +1 everyday, B predicts -1. The adversary assigns +1 loss tee cublichenes expert you as the learner pick, and 0 tee the other. Therelly, on each day you moke a mistake, i. l. after T docs, T cumulative mistakes. However on each day eveactly one expert makes a mistake. Hewer, because minimum $\leqslant a v e r a g e, ~ ¥$ an expert that aet the end of T days has made at most $T / 2$ mistakes.
Let $m^{*}=$ minimum mumbler of mistakes for any expert. Hers, $2 m^{*}$ seems like a natural harrier. However, the alone lower hound construction crucially depends on the lecomio's strategy being deterministic. For a randomized strategy (where the adversary cant inspect the lewoners
romacurn
doe letter, and indeed we can.
MULTIPLICATIVE WEIGHTS/ HEDGE ALGORITHM
Set $w_{i}^{1}=1 \quad \forall i \in[N]$
For $t=1 \cdots \cdot T$

$$
\begin{aligned}
& =1 \ldots T \\
& \text { Play } i_{t} \sim P_{t} \text { whore } p_{t}^{i}=\frac{w_{i}^{t}}{\sum_{i \in[i n]} w_{i}^{t}} . \\
& l_{t} \in[
\end{aligned}
$$

Adnorsany chooses loss nestor $l_{t} \in[-1,+1]^{N}$, that can depend on past losses, weights -past \& current, all actions $i_{1} \ldots i_{t-1}$, lust not i_{t}.
$\binom{$ Equinalently, of can depend an i_{t} as lang as the }{ learners payoff $\left.\triangleq \underset{i \sim P_{t}}{ } \mathbb{E}_{t}^{i}=P_{t}^{\top} l_{t}}.\right)$ Update $w_{i}^{t+1}=w_{i}^{t} e^{-\eta i_{t}}$.
$\xlongequal{\text { THEOREM. }} \underbrace{\operatorname{IE}}_{\text {LEARNERS }}\left[\sum_{t=1}^{T} l_{t}^{i_{t}}\right] ~-\underbrace{\min _{i \in[N]} \sum_{t=1}^{T} L_{t}^{i}}_{\text {Best experts' }}=\sum_{t=1}^{T} p_{t}^{T} l_{t}-\min _{P \in \Lambda_{N-1}} \sum_{t=1}^{T} P^{\top} l_{t} \leqslant \sqrt{T \log N}$

Let us expleere the implication before dining into a proof. Dividing lu y T, we get

$$
\begin{aligned}
& \text { ing lu } T \text {, we get } \\
& \text { LEARNER's } \\
& \text { AVERAGE LOSS }
\end{aligned} \leq \begin{gathered}
\text { AVERAGE LOSS } \\
\text { OF THE BEST EXPERT } \\
\text { in HINDICHT }
\end{gathered}+\sqrt{\frac{\log N}{T}} .
$$

Comments:

1. This guarantee holds foo arbitrarily, or even adversarially, chosen lees asignment/vectors. No distrilunticencel assumptions more made unlike stats/mL/stochastics.
2. Therès no ix multiplier associated with the lest expert. His lereales our lower hound.
Bo Ences average los $\rightarrow 0$ as $T \rightarrow \infty$. In particular, if $T \geqslant \log N / \varepsilon^{2}$, excess average loss $\leqslant \varepsilon_{0}$
3. Its a relative error guarantee, no one can ensure low absolute error even feer random las functicent. A relation (additive) error metric is something experts in other fields outside ML/ statistical learning find hard te o swallow (although situation is very rapidly changing), let it has proved tee lee one of the most foor-reaching designer choices in ML Theory.
4. The cost for having many inaccurate experts, as long as there io one good one, is sonall lecause of the log N dependence. Erponenticel N still yields reasonable hounds.
5. The nature of the hoeend in \#3 is not an acrielent. It closely resembles uniform comergence results from statistical learning, precisely because confine learning is an algorithmic theory as opposed to an analytic theory that generalizes the former.
PROOF
OF THEOREM. Our basic proof strategy is to construct a OF THEOREM. Potential function that decreases when a learner makes mistakes. Joking inspiration from mAJORITY/ HALVING, we take $\Phi_{1}=\sum_{i \in[n]} w_{i}^{1}=N$. Now,

$$
\begin{aligned}
& \Phi_{t+1}=\sum_{i \in[n]} w_{i}^{t+1}=\sum_{i \in[n]} w_{i}^{t} e^{-\eta l_{t}^{i}}=\Phi_{t} \sum_{i \in[n]} \frac{w_{i}^{t}}{\sum_{i \in[n]}^{w_{i}^{t}}} e^{-\eta l_{t}^{i}} \\
& \\
& \leq \Phi_{t} \sum_{i \in[n]} P_{t}^{i}\left(1-\eta l_{t}^{i}+\eta^{2}\left(l_{t}^{i}\right)^{2}\right) \\
& \quad \leq \Phi_{t}\left(1-\eta P_{t}^{\top} l_{t}+\eta^{2}\right) \leq \Phi_{t} e^{-\eta p_{t}^{\top} l_{t}+\eta^{2}} \\
& \text { using } e^{x} \leq 1+x+x^{2} f x \leq 1 \text {, and } 1+\leq e^{x} \forall x \in \mathbb{R} \text { in } \\
& \text { sinsessine steps of the derivation }
\end{aligned}
$$ sincessine steps of the decimation.

We are almost done. Let $i^{*} \in \operatorname{argmin} i \in[n] \sum_{t=1}^{T} L_{t}^{i}$ lu e the lest expert in hindsight. Then using the alvoene:

$$
\begin{aligned}
& \text { expert in hindsight. Then using she avo } \\
& e^{-\eta \sum_{t=1}^{T} l_{t}^{i *}} \leqslant \Phi_{\tau+1} \leqslant \Phi_{1} e^{-\eta \sum_{t=1}^{T} p_{t}^{T} l_{t}+\eta^{2} T}
\end{aligned}
$$

Joking log on both sides, we get:

$$
\begin{aligned}
& \text { Taking } \log \text { on both sides, we get } \\
& -\eta \sum_{t=1}^{+} l_{t}^{i *} \leq \log N-\eta \sum_{t=1}^{+} P_{t}^{\top} l_{t}+\eta^{2} T \\
& \Rightarrow \sum_{t=1}^{+} P_{t}^{\top} l_{t}-\sum_{t=1}^{T} l_{t}^{i *} \leqslant \frac{\log N}{\eta}+\eta T \leqslant 2 \sqrt{T \log N}
\end{aligned}
$$

MOLT WEIGHTS
EXAMPLE ONE: SOLVING LOS
Well solve the peasilidity problem: $7 ? x \in K$ A $x \leq b$, where K is a "simple" ceennen set. Why restrict tee simple sets? Because nell use a subreutime/oracabe that answers \exists ? $x \in K \quad C^{\top} x \leqslant d$. Nate that this only has one inequality constraint, instead of m.
Example 1: $K=B_{2}=\left\{\|x\|_{2} \leqslant 1\right\}$. $\exists ? x \in K, c^{\top} x \leq d$ is YES inf (a) $d \geqslant 0$ (or $0^{\top} c \leqslant d$), OR (b) $\operatorname{dist}(0, K)=\frac{|d|}{\|c\|_{2}} \leqslant 1$.
Example $2: K=\left\{x \geqslant 03 . \exists ? x \in K, C^{T} x \leqslant d\right.$ is YeS if (a) $d \geqslant O$ (ar $O^{\top} c \leqslant d$), $O R(b) \exists i, c_{i}<0$.
(En) Prone the correctness of the procedures alone for $K=B_{2}$ and $K=\{x \geqslant 0\}$. Also, describe a procedure the efficiently solve $\exists ? x \in\left\{\|x\|_{\infty} \leqslant 1\right\} c^{T} x \leqslant d$ 。
we describe the algorithm next. Think of it as a game where the learner tries to prove the LP is infeasille assisted lay the constraints as experts, by asking gotcha questreens. The ORACLE assuages the learners coencerns.

ALGORITHM.

1. Each constraint is an expert, with $w_{i}^{T}=1 \forall i \in[m]$. 2. For $t=1 \ldots T$

Learner chooses $P_{t}^{i}=\frac{w_{i}^{t}}{\sum_{i \in[\in]} w_{i}^{t}}$.
Asks the oracle $\exists ? \times \in K, P_{t}^{\top} A x \leqslant P_{t}^{\top} b$. If NO, Output that the original $L P$ is infeasilute. If y IS, ORACIE returns $x_{t} \in K$ such $P_{t}^{\top} A x_{t} \leqslant P_{t}^{\top} b$.

Each constraint i receives lass $\frac{1}{\rho}\left(b_{i}-d_{i}^{\top} x_{z}\right)$.

$$
\begin{equation*}
w_{i}^{t+1}=w_{i}^{t} e^{-\eta\left(b_{i}-a_{i}^{+} x_{t}\right) / \rho} \text { update. } \tag{-1,+1}
\end{equation*}
$$

Here, $\rho=\max _{i \in[m], x \in K}\left|b_{i}-a_{i}^{\top} x\right|=$ W[DTM of $A x \leqslant b$ against K.
CLAIM. For any $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, this algorithm either outputs:
(A) that \exists ? $x \in K, A x \leqslant b$ is implasille, correctly, or
(B) a point $\bar{x}=\frac{1}{T} \sum_{t=1}^{T} x_{t} \in K$ such $A x \leq b+\rho \sqrt{\frac{\log m}{T}} 1_{0}$

In words, either the algorithm correctly decodes that the LP is infeasible or outputs an ε-flasilde solution, when run for long enough, i.l., when $T=\frac{\rho^{2} \log m}{\varepsilon^{2}}$.
PROOF. Clearly, if $A x \leqslant b, x \in K$ is feasible, then $\forall P \geqslant 0$, we have that $P^{\top} A x \leq P^{\top} b, x \in R$ is feasible. Thus, we only need tee prone part B cessuming ORACLE says yES on all rounds. If $s o$, by the regret gerarantes:

$$
\sum_{i=1}^{T} p_{t}^{\top}\left(b-A x_{t}\right) \leqq \min _{i \in[m]} \sum_{t=1}^{T}\left(b_{i}-a_{i}^{\top} x_{t}\right)+\rho \sqrt{T \log m_{0}}
$$

But $\forall t, p_{t}^{\top} b \geqslant p_{t}^{\top} A x_{t}$. Hence,

$$
\begin{aligned}
& t \forall t, P_{t}^{\top} b \geqslant P_{t}^{\top} A x_{t} . \\
& 0 \leqslant \frac{1}{T} \sum_{t=1}^{T} P_{t}\left(b-A x_{t}\right) \leqslant \min _{i \in[m]}\left(b_{i}-a_{i}^{\top}\left(\sum_{t=1}^{T} x_{t} / T\right)\right)+\rho \sqrt{\frac{\log m}{T}} .
\end{aligned}
$$

Rearranging, $\forall i \in[m], a_{i}^{\top} \bar{x} \leqslant b_{i}+\rho \sqrt{\frac{\log m}{T}} 0$

EXAMPLE 2: CONSTRUCTIVE MINIMAX THEOREM
Recall that $\min _{x \in D} \max x^{\top} A y=\max _{y \in D} \min _{x \in D} x^{\top} A y$ o $x \in \Delta \quad x \in D \quad y \in \Delta \quad x \in D$
We arrived it using strong duality, in fact it is equinalent to s strong duality. We mill gimme a constructive algorothni ally efficient procef of tho statement. In fact, the prenicens algorithm can he seen as an efficient algorithmic Farkas' Lemma. Assume $\max _{i, j}\left|a_{i j}\right| \leqslant 1$. Else, we scale.
ALGORITHM

1. Row player thinks of each row as an expert.
2. $t=1 \ldots T$

Row player plays $x_{t} \in \Lambda$ as per Milt Weight Column player plays $y_{t} \in \operatorname{argmax} \underset{y \in D}{ } x_{t}^{\top} A y$.
Row i's loss is $e_{i}^{\top} A y_{t}$.
CLAIM. If $T \geqslant \frac{\log m}{\varepsilon^{2}}$, then $\bar{x}=\frac{1}{T} \sum_{i=1}^{T} x_{t}$ satisfies

$$
\max _{y \in \Delta} \bar{x}^{\top} A y \leqslant \max _{y \in \Delta} \min _{x \in \Delta} x^{\top} A y+\varepsilon_{0}
$$

Nate that this is the nen-trimial direction. By meade duality or definition of min/man, $\min _{x \in D} \max _{y \in D} n^{\top} A y \geqslant \max _{y \in D} \min _{x \in D} x^{\top} A y$
By compactness + continuity, we get $\exists x^{\prime}, \max _{y \in D} x^{\top} A y \leq \max _{y \in \triangle} \min _{x \in \triangle} x^{\top} A y$

$$
\text { PROOF. } \max _{y \in D} \bar{x}^{\top} A y=\max _{y \in \Delta} \frac{T}{T} \sum_{t=1}^{T} x_{t}^{\top} A_{y} \leqslant \frac{1}{T} \sum_{t=1}^{T} \max _{y \in \Delta} x_{t}^{T} A y
$$

$$
=\frac{1}{T} \sum_{t=1}^{T} x_{t}^{T} A y_{t} \leq \min _{x \in \Delta} \frac{1}{T} \sum_{t=1}^{ \pm} x^{\top} A y_{t}+\sqrt{\frac{\log m}{T}}
$$

using regret guarantee

$$
=\min _{x \in \Delta} x^{\top} A\left(\frac{1}{T} \sum_{t=1}^{ \pm} y_{t}\right)+\sqrt{\frac{\log m}{T}}
$$

$$
=\max _{y \in D} \min _{x \in \Delta} x^{\top} A y+\sqrt{\frac{\log m}{T}}
$$

So, law regret \Rightarrow mimiman theorem. But can we go hack? David Blackwell in 1956 proved a close equinaleme between existence of low-regret strategic. \& a certain generalization of the miniman theorem.

References:
The best reference for regret minimization \& applications to LPs/minimax duality is Elad's book — specifically chapters 1 \& 8. See this survey from Sanjeev, Elad and Sateen for applications of the multiplicative weights algorithm.
See this fantastic paper by Yoav Freund and Robert Schapire, who pioneered the Godel prize-winning boosting approach to machine learning using the regret-minimax link.
4. This NYTimes article quoting Rakesh Vohra chronicling the (independent) rediscovery of multiplicative weights in many academic fields; I think of this as convergent evolution. In 1957, for example, a statistician named James Hanna called his theorem Bayesian Regret. He had been preceded by David Blackwell, also a statistician, who called his theorem Controlled Random Walks. Other, later papers had titles like "On Pseudo Games," "How to Play an Unknown Game," "Universal Coding" and "Universal Portfolios," Dr. Vohra said, adding, "It's not obvious how you do a literature search for this result."

Assignment \#1
ReLEASED 11:59 pm Sep 6 Wed
47834 LINEAR
DUE 11:59 pm $\operatorname{Sep} 13$ Wed
ELECTROWICALLY (LaTex / scan / hand-wrilten)

Q1. PART $A-2$ points.
Prove that $f: \mathcal{X} \rightarrow \mathbb{R}, f(x)=\frac{c^{\top} x+p}{d^{\top} x+q}$ is quasi-convex. an $\lambda=\left\{x: d^{\top} x+q \geqslant 0\right\}$.
PART B - 8 points
Consider the following optimization problem.

$$
\left.\begin{array}{ll}
\max _{x \in \mathcal{C}} \frac{c^{\top} x+p}{d^{\top} x+q} \\
\text { sit } & A x \leqslant b
\end{array}\right\}(\theta)
$$

Propose a linear programming reformulation of this optimization problem. Also, describe how mould one reconstruct a solution toe (θ) given an optimal solution of your proposed LP.
Comment: Ute 5 points, if you do not have a formulation, let propose an algorithm that selves (Q) ley scelining multiple LBs.

Q2. PART - 2 paints
How far in Eudidean distance is a point $x^{\prime} \in \mathbb{R}^{n}$ from the hyperplane $H=\left\{x: a^{\top} x=b\right\}$?
PART B-8 points
Consider the set $P=\{x: A x \leq b\}$; assume it's compact and noe-empty. Provide a linear program to compute the center \& the radius of the largest sphere contained (entirely) inside P.

Q3. PART $A-6$ points.
In 2-dimensicens, consider

$$
\left.\left.\begin{array}{rl}
A & =\left\{x \in \mathbb{R}^{2}: \quad \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} \leqslant 1\right\} \\
B & =\left\{x \in \mathbb{R}^{2}:\left|x_{1}\right|+\left|x_{2}\right| \leqslant \mathbb{1}\right\} \\
C(\varepsilon) & =\left\{x \in \mathbb{R}_{;}^{2} ;\right.
\end{array} x_{1}^{2}+x_{2}^{2} \leqslant \varepsilon^{2}\right\}\right\}
$$

Sketch $A+B$ and $A+C(1)$; ' + ' is the Mninkounki Sum.
Compute $\lim _{\varepsilon \rightarrow 0^{+}} \frac{\text { Area }(A+C(\varepsilon))-\text { Area }(A)}{\varepsilon}$.
PART B-4 points.
Now, consider 2 amis-aligned hyper-cuheids (colo, 2 anis aligned ' n ' dimensional rectangles) A and B, possibly of unequal sizes.
Prone $\operatorname{val}(A+B)^{1 / n} \geqslant \operatorname{vel}(A)^{1 / n}+\operatorname{var}(B)^{1 / n}$

Assignment \#2

RELEASED	$\operatorname{sep} 20$	$11: 59 \mathrm{pm}$
DUE	$\operatorname{sep} 27$	$11: 59 \mathrm{pm}$

47834 LINEAR PROGRAmming
Q.1. (10 points)

Minkeusker-Weyl says that any hounded polyhedron can be written in tine ways: either mia inequalities defining it, or as conner hull of some set of points. But how do me know if ultimately we are talking absent the same set expressed differently. Concretely consider:

$$
\begin{array}{ll}
A=\operatorname{convex}\left\{\left(x_{1} \cdots \cdot x_{m}\right\}\right) & B=\operatorname{ConvEx}\left(\left\{y_{1} \cdots \cdot y_{m}\right\}\right) \\
C=\{x: A x \leq b\} & D=\{x: C x \leqslant d\} .
\end{array}
$$

Assume you can solve any LP with ' n ' variables and ' m ' constraints in poly $(m, n)=(m+n)^{10}$ time. Here $A, C \in \mathbb{R}^{m \times n}, x_{i}, y_{i} \in \mathbb{R}^{n}$. Grime polynomial time (e.g. $(m+n)^{100}$-time) algorittuns the answer as many of these as possible:
(1) go $A \subseteq B$?
(2) gs $A \subseteq C$?
(3) gs $c \subseteq D$?
(4) gs $C \subseteq A$?

Hint: Three of these are solvable in poly -time.
Q2. (10 paints)
Recall that 1 comic hull requires $\lambda_{i} \geqslant 0 \forall i$.
2. affine hall requires $\sum \lambda_{i}=1$.
3. Convex hole requires hath $\lambda_{i} \geqslant 0 \forall i, \sum \lambda_{i}=1$

This suggests that for any set S,

PART A: Prone that this is false. For example, construct a set S for which (k) is false.
PART B: What minimal conditions must AFFNE (S) satisfy see the et $(*)$ is true $\forall S$? Prone that (*) indeed holds under your proposed condition

Q3. (10 points)
Let $2^{[n]}$ he the set of all sulesets of $[n]=\{1,2 \ldots n\}$. Consider a founcticen $f: 2^{[n]} \rightarrow \mathbb{R}_{+}$such that
(1) $f(\varnothing)=0$.
(2) $f(S) \leqslant f(T) \quad \forall S \subseteq T \subseteq[n]$.
(3) $f(S)+f(T) \geqslant f(S \cap T)+f(S \cup T) \forall S, T \leq\left[n_{-}^{-}\right.$

Now, consider the feellowing LP moth exponentially many constraints, and some rector $C \in \mathbb{R}_{0}^{n}$

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & \sum_{j \in S} x_{j} \leqslant f(s) \quad \forall S \subseteq[n] . \\
& x \geqslant 0
\end{array}
$$

Give a polynomial (in n) time algorithm tee sober this LP; the algorithm must emanate the function of polynomial (in n) times. Prone your algceriltm is correct by constructing a dual feasible scelutvon that obtains the same celigictine nalue as the output of your algcerithn.
Nate: 3 paints for listing the dual IPo

Assignment \#3
$\begin{array}{lll}\text { RELEASED } & \text { Oct } 02 & 11: 59 \mathrm{pm} \\ \text { DUE } & \text { Oct } 09 & 11: 59 \mathrm{pm}\end{array}$
LINEAR PROGRAMMING
Q1. (10 paints)
Let n he a $B D S$ with hasid B for $\min _{A x} C^{\top} x=b, x \geqslant 0$.
(A) Prone that if the reduced cost of energy narialile net in B is positive, then x is the UNIQVE minimum
(B) If x is the UNIQUE minimum \& the $L P$ is non-degeurate, then the reduced cost of any noeriable net in B is positive.

Q2. (10 points)
Assume $\min _{x} C_{A_{x}}{ }^{\top} x=b, x \geqslant 0$ is nean-degenerate.
Consider $f(\lambda)=\min _{x}(c+\lambda d)^{\top} x$, for $\lambda \geqslant 0, x \geqslant 0$.
Say x^{*} with hasis B is optimal at $\lambda=0$.
(A) Prone the set of λ 's for which x^{*} is an optimum is $\left[0, \lambda_{1}\right]$ for some $\lambda_{1} \geqslant 0$. g_{n} fact, gimme as efficient of an algcerittm as possilule to compute the largest such λ_{1}.
(B) Prone that $\exists 0=\lambda_{0} \leq \lambda_{1} \leqslant \ldots \leq \lambda_{k} \leq \lambda_{k+1}=+\infty$ where $k \geqslant 0$ and lases $B_{0} \ldots B_{k}$ such that some x_{i} with have B_{i} is optimal off $\lambda \in\left[\lambda_{i}, \lambda_{i+1}\right]_{0}$.

Q3. (10 points)
(A) Prone $f(b)=\min _{x} c_{A X}^{\top} x$
(B) Prone $g(C)=\min _{x} C_{A x=b, x \geqslant 0}^{\top} x=b$ is concave.
(C) Rewrite the set $C\left(x^{*}\right)=\left\{C: C^{\top} x^{*} \geqslant \max _{y \in P} C^{\top} y\right\}$ where
$P=\{x: A x \leqslant b\}$ as a polyhedron with polynomidely many constraints.

