
47-837: Statistical Foundations of OR Lecture 1

Basic Concentration Inequalities
Lecturer: Karan Singh

This course is about both negotiating uncertainty and using randomness in decision making. Most 
modern-day decision making systems (think, for example, ride-share) operate while dealing with 
multiple sources of randomness: Can we describe them well using deterministic systems? Do the 
particulars of uncertainties they are subject to actually matter? What are the aggregate statistical 
properties of such algorithms? The goal here is to provide just enough foundational knowledge so 
that the students can dive deeply into these data-driven optimization and algorithm design.
In general, we will weave through a potpourri of topics. We will start with basic concentration 
inequalities in the first week and discuss Bayesian statistics and causal inference the week after. 
After switching to a couple of weeks on statistical learning and sequential prediction, we will survey 
statistical fairness in the decision-making context. The final topic will be the information-theoretic 
limits of performance for data-driven algorithms.

Contents
1. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Approximate Caratheodory’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Application: Choice Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Moment Generation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5. Why high probability bounds? Why not CLT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6. Subgaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7. Concentration Inequalities for Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8. Maximal Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9. Looking Ahead: Nonlinear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. Convexity

Definition 1  A set 𝑆 ⊆ vector space 𝑉  is convex if for all 𝑥, 𝑦 ∈ 𝑆 and 𝜆 ∈ [0, 1], 𝜆𝑥 + (1 −𝜆)𝑦 ∈ 𝑆.

Note that 𝑆𝑥,𝑦 = {𝜆𝑥 + (1 − 𝜆)𝑦 : 𝜆 ∈ [0, 1]} is a line segment that connects 𝑥 and 𝑦. In other 
words, a convex set contains all line segments whose endpoints lie inside the set.



Definition 2  A function 𝑓 : 𝒳︀ → ℝ, where 𝒳︀ is a convex set, is said to be convex if ∀𝑥, 𝑦 ∈𝒳︀, ∀𝜆 ∈ [0, 1], 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦).
In other words, for a convex function, the function value at any interpolation is (weakly) less than 
the interpolated function values.

Definition 3  The convex hull of a set 𝑋 ⊆ some vector space 𝑉  is the smallest convex set 
that contains X.

Here, the notion of smallness is with respect to inclusion, that is, 𝐴 is smaller than 𝐵 if 𝐴 ⊂ 𝐵. 
Therefore, incomparable sets exist; nevertheless, the smallest is well defined. If 𝑋 = {𝑥1, 𝑥2, …𝑥𝑚} 
is finite, the convex hull becomes {∑𝑚𝑖=1 𝛼𝑖𝑥𝑖 : ∑𝑚𝑖=1 𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, ∀𝑖 ∈ [𝑚]}.

2. Probability
A probability measure is described by (Ω, ℱ︀, Pr), where Ω is the outcome space, ℱ︀ ⊆ 2Ω is the set 
of measurable subsets of Ω, and 𝑃 : ℱ︀ → [0, 1] assigns probability to the sets in ℱ︀. The three rules 
for 𝑃  are: it must be non-negative, it must assign measure one to Ω, and it must be additive on 
any collection of countably many disjoint sets in ℱ︀. In this course, it is okay to think of ℱ︀ = 2Ω; 
this is true, for example, for discrete outcomes. We will avoid measurability issues by assuming 
that you know what expectation is.

Lemma 4  For any two real-valued random variables 𝑋, 𝑌 , 𝔼[𝑋 + 𝑌 ] = 𝔼[𝑋] + 𝔼[𝑌 ].
Recall that a collection of random variables {𝑋𝑖}𝑖∈ℐ︀ is independent if Pr(𝑋𝑖 ∈ 𝑆𝑖)𝑖∈ℐ︀ =Π𝑖∈ℐ︀ Pr(𝑋𝑖 ∈ 𝑆𝑖). A weaker condition is pairwise independence, which only requires that for all 
pairs 𝑋1, 𝑋2 ∈ {𝑋𝑖}𝑖∈ℐ︀, we have Pr(𝑋1 ∈ 𝑆1, 𝑋2 ∈ 𝑆2) = Pr(𝑋2 ∈ 𝑆1) Pr(𝑋2 ∈ 𝑆2).
Recall that the variance of 𝑋 is defined as 𝕍[𝑋] = 𝔼[(𝑋 − 𝔼[𝑋])2]. Using this, we observe that 
for independent random variables 𝑋, 𝑌 , we have𝕍[𝑋 + 𝑌 ] = 𝔼[(𝑋 − 𝔼𝑋 + 𝑌 − 𝔼𝑌 )2] = 𝕍[𝑋] + 𝕍[𝑌 ] + 2𝔼[𝑋 − 𝔼𝑋]⏟=>=?=0 𝔼[𝑌 − 𝔼𝑌 ] = 𝕍[𝑋] + 𝕍[𝑌 ].
In fact, the additivity of variance, over any number of random variables, only requires pairwise 
independence.
Exercise.  Prove that 𝕍[𝑋] = 𝔼[𝑋2] − (𝔼[𝑋])2 = min𝑎∈ℝ 𝔼[(𝑋 − 𝑎)2] = 12𝔼[(𝑋 − 𝑋′)2], where 𝑋′ 
is an independent copy of 𝑋.

3. Approximate Caratheodory’s Theorem
In convex geometry, Caratheodory’s theorem states that, given a set of any size in ℝ𝑑, any point 
in its convex hull can be written as a convex combination of 𝑑 + 1 points. Notice that there is 
no dependence on the number of points in the original set. In two dimensions, you can convince 



yourself that this is true by noting that any convex polygon can be perfectly decomposed into non-
overlapping triangles by connecting the vertices in the correct way; thus, any point in a convex 
polygon lies in a triangle supported on the vertices of the polygon.
Such theorems are results about minimal representations: how many elements are needed to 
represent any point from a rich set? We will prove another such result that uses far fewer points, 
in fact, independent of the dimension, given a small slack.

Theorem 5 (Approximate Caratheodory's)  Let 𝑋 be a set in ℝ𝑑 contained in the unit 
ball 𝔹2 = {𝑥 : ‖𝑥‖2 ≤ 1}. For any 𝑘 ≥ 0 and 𝑦 in the convex hull of 𝑋, there exist 𝑘 points 𝑧1, …𝑧𝑘 ∈ 𝑋 such that ‖𝑦 − 1𝑘 ∑𝑘

𝑖=1 𝑧𝑘‖2 ≤ 1√𝑘.
Thus, if we are willing to tolerate 𝜀 slack in how well 𝑥 is approximated, 1𝜀2  points suffice. In fact, 
note that our convex combination is also special, being a simple average.
Proof.  Since 𝑦 is the convex hull, we know that 𝑦 = ∑𝑚𝑖=1 𝛼𝑖𝑥𝑖 for some 𝑥1, 𝑥2, …𝑥𝑚 ∈ 𝑋, where 𝛼𝑖 ≥ 0 sum to one. Consider a random variable 𝑍1 that picks 𝑥𝑖 with probability 𝛼𝑖 for all 𝑖 ∈ [𝑚]. 
Notice that by definition 𝔼[𝑍1] = 𝑦. Consider 𝑍2, …𝑍𝑘 additional independent copies of 𝑍1. Now

𝔼‖1𝑘 ∑𝑘
𝑖=1 𝑍𝑖 − 𝑦‖2

2 = 1𝑘2 ∑𝑘
𝑖=1 𝔼‖𝑍𝑖 − 𝑦‖22 = 1𝑘(𝔼‖𝑍1‖22 − ‖𝑦‖22) ≤ 1𝑘.

Thus, there must exist some realization of 𝑍1, …𝑍𝑘 such that ‖1𝑘 ∑𝑘𝑖=1 𝑍𝑖 − 𝑦‖22 ≤ 1𝑘 . ⁠ □
3.1. Application: Choice Models
Human behavior is tricky and often inconsistent. Choice models study statistical models of the 
same. For example, in the Plackett-Luce model, with a universe of 𝑛 products, it is assumed that 
a tester given items 𝑖 and 𝑗 will prefer 𝑖 over 𝑗 with probability 𝑤𝑖/(𝑤𝑖 + 𝑤𝑗). Given a lot of such 
empirical observations, the task is to recover the underlying quality 𝑤𝑖 of the items.
Here, we consider a (nonparametric) model for ranking. Imagine a universe of 𝑛 products, where it 
is assumed that the testers are identical and randomly pick a ranking of all products, i.e., Pr(𝜋) =∑𝑛!𝑖=1 𝛼𝑖𝟏𝜋=𝜋𝑖 , where we 𝜋𝑖’s are all 𝑛! permutations. But instead of receiving direct observations 
of many such stochastic rankings, we receive a summary statistic: a matrix 𝑍 ∈ [0, 1]𝑛×𝑛 where 𝑍𝑖𝑗 represents the fraction of times the product 𝑖 earned the rank 𝑗. Farias, Jagathabula and 
Shah considered the following question: can we produce a choice model that explains the observed 
matrix? Their main result is that a linearly sparse model is sufficient for this purpose. We will 
recover this as an implication.
We begin with an application of Caratheodory’s theorem. A nonnegative matrix is said to be 
doubly stochastic if row and column sums are one. 𝑍 is such a matrix. Each permutation 𝜋 can 



be written as a permutation matrix Π ∈ {0, 1}𝑛×𝑛 where Π𝑖𝑗 if and only if the element 𝑖 occurs 
in position 𝑗 in 𝜋. For example (2, 4, 3, 1) can be encoded as

(nnnnn
o0100

0001
0010

1000)qqqqq
r

Notice that such matrices are also doubly stochastic, since there is exactly one 1 in each row and 
column. A very fundamental result is as follows:

Theorem 6 (Birkhoff-von-Neumann)  The convex hull of all permutation matrices is 
precisely the set of doubly stochastic matrices.

By Caratheodory’s, any such 𝑍 can be written as the convex combination of (𝑛 − 1)2 + 1 
permutation matrices. Thus, any 𝑍 can be explained away with a distribution supported on just (𝑛 − 1)2 + 1 matrices, an exponentially small fraction of the original 𝑛! parameters. Perhaps a 
bound of 𝑛2 + 1 is easier. The precise number comes about by noting that the set of doubly 
stochastic matrices is (𝑛 − 1)2-dimensional, given the (𝑛 − 1) × (𝑛 − 1) principal sub-matrix, one 
can always reconstruct the last row and column due to the row and column sum constraints.
Using Approximate Caratheodory’s, we can guarantee that there exists a convex combination 𝑍′ 
of 𝑛/𝜀2 permutation matrices such that ‖𝑍 − 𝑍′‖𝐹 = √∑𝑖,𝑗∈[𝑛]2 (𝑍𝑖𝑗 − 𝑍′𝑖𝑗)2 ≤ 𝜀. The additional 𝑛 factor arises because a permutation matrix has Frobenius norm √𝑛, and both sides of the 
inequality in Approximate Caratheodory’s grow linearly with the scale.

4. Moment Generation Function
Given a random variable 𝑋, Ψ𝑋(𝑡) = 𝔼[𝑒𝑡𝑋] is defined to be its moment generating function. The 
MGFs, upon their existence, encode all the moments and vise versa.

Proposition 7  𝑑𝑘𝑑𝑡𝑘 Ψ𝑋(𝑡)|𝑡=0 = 𝔼[𝑋𝑘𝑒𝑡𝑋]|𝑡=0 = 𝔼[𝑋𝑘].
Bernoulli Distribution. 𝑋 ∼ Be(𝑝) is {0, 1}-valued with Pr(𝑋 = 1) = 𝑝.ΨBe(𝑝)(𝑡) = (1 − 𝑝) + 𝑝𝑒𝑡.
Rademacher Distribution. 𝑋 ∼ {±1} is {±1}-valued with Pr(𝑋 = 1) = 12 .Ψ{±1}(𝑡) = 12(𝑒𝑡 + 𝑒−𝑡) = 1 + 𝑡22! + 𝑡44! + … ≤ 1 + ∑𝑘≥1 𝑡2𝑘2𝑘𝑘! = 𝑒𝑡2/2.
Gaussian Distribution. 𝑍𝑠 im 𝒩︀(𝜇, 𝜎2) if 𝑍 = 𝜎𝑋 + 𝜇 and 𝑋 ∼ 𝒩︀(0, 1) where 𝑓𝒩︀(0,1)(𝑥) =1√2𝜋𝑒−𝑥2/2. Recall that Γ(𝑘) = ∫∞0 𝑡𝑘−1𝑒−𝑡𝑑𝑡 and Γ(𝑘 + 1) ≤ 𝑘𝑘. Now, a few basic facts, where we 
assume 𝑡, 𝑘 ≥ 1.



Ψ𝑋(𝑡) = 1√2𝜋 ∫ 𝑒𝑡𝑥−𝑥2/2𝑑𝑥 = 𝑒𝜎2𝑡2/2√2𝜋 ∫ 𝑒−(𝑥−𝑡)2/2𝑑𝑥 = 𝑒𝑡2/2
Ψ3𝑋28 (1) = 1√2𝜋 ∫ 𝑒3𝑥2/8−𝑥2/2𝑑𝑥 = 1√2𝜋 ∫ 𝑒−𝑥2/8𝑑𝑥 = 2Pr(𝑋 ≥ 𝑡) = 1√2𝜋 ∫∞𝑡 𝑒−𝑥2/2𝑑𝑥 ≤ 1√2𝜋 ∫∞𝑡 𝑥𝑡 𝑒−𝑥2/2𝑑𝑥 = 1√2𝜋𝑡𝑒−𝑡2/2 (Mill's inequality)

𝔼[|𝑋|𝑘] = 1√2𝜋 ∫ 𝑥𝑘𝑒−𝑥2/2𝑑𝑥 =⏟𝑧=𝑥2/2 2𝑘22√𝑘𝜋 ∫ 𝑧𝑘/2𝑒−𝑧𝑑𝑧 = 2𝑘/22√𝑘𝜋Γ(𝑘/2 + 1) ≤ 𝐶𝑝𝑝/2
5. Why high probability bounds? Why not CLT?
In the future, we will be interested in high-probability tail bounds, where the magnitude of the 
random deviation scales as log 1/𝛿, instead of inverse polynomially in 1/𝛿. This might be hard 
to appreciate now, but ultimately, only bounds of the former sort will be useful to control the 
maximum of a bunch of random variables, which is what we are ultimately building towards.
If 𝑋1, …𝑋𝑛 ∼ 𝒩︀(0, 1), then 1𝑛 ∑𝑛𝑖=1 𝑥𝑖 ∼ 𝒩︀(0, 1𝑛), and hence Pr( 1𝑛 ∑𝑛𝑖=1 𝑥𝑖 ≥ 𝑡) ≤ 𝑒−𝑛𝑡2/2.

Theorem 8 (Central Limit Theorem)  Consider independent random variables 𝑋1, 𝑋2… 
with mean 𝜇 and variance 𝜎2, then∑𝑛𝑖=1(𝑋𝑖 − 𝜇)𝜎√𝑛 → 𝒩︀(0, 1)
that is, their density functions at any level 𝑡 converge, as 𝑛 → ∞.

CLT says that, in principle, for sufficiently large 𝑛, appropriately normalized sums behave as if 
each component is a Gaussian. The tail bound for a Gaussian decay exponentially. What stops 
us from reducing everything to the Gaussian case? CLT is an asymptotic statement and does not 
immediately imply anything for a finite number of samples. There is a way to repair this.

Theorem 9 (Berry-Essen)  Consider independent random variables 𝑋1, 𝑋2… with mean 𝜇 and variance 𝜎2, then for any 𝑡,|Pr(∑𝑛𝑖=1(𝑋𝑖 − 𝜇)𝜎√𝑛 ≥ 𝑡) − Pr(𝒩︀(0, 1) ≥ 𝑡)| ≤ 𝐶𝔼[|𝑋 − 𝔼𝑋|3]𝜎3√𝑛 .
But now, we get Pr( 1𝑛 ∑𝑛𝑖=1 𝑥𝑖 − 𝜇 ≥ 𝑡) ≤ 𝑒−𝑛𝑡2/2 + 𝐶𝔼[|𝑋−𝔼𝑋|3]𝜎3√𝑛 , and thus, for the RHS to be at 
most 𝛿, 𝑛 ≥ 1/𝛿2, ruling out a dependence of solely log 1/𝛿.



6. Subgaussian Random Variables

Theorem 10 (Markov's)  For a nonnegative RV 𝑋, for any 𝑡 > 0,Pr(𝑋 ≥ 𝑡) ≥ 𝔼[𝑋]𝑡 .
Proof.  Observe 𝑋 ≥ 𝑋𝟏𝑋≥𝑡 ≥ 𝑡𝟏𝑋≥𝑡. Take expectations on both sides and note 𝔼[𝟏𝐴] = Pr(𝐴). ⁠ □
Exercise.  One advantage of using indicator variables and expectations is that your proofs hold 
as-is for both continuous and discrete random variables, in fact, for mixed ones too. Similarly use 
indicate variables to prove that Pr(∪{𝑖∈ℐ︀) 𝐴𝑖) ≤ ∑𝑖∈ℐ︀ Pr(𝐴𝑖).
Exercise.  Using indicator variables and expectations, prove, for any a nonnegative random variable 𝑋, that 𝔼[𝑋] = ∫∞ Pr(𝑋 ≥ 𝑡)𝑑𝑡.

Theorem 11 (Chebyshev's)  For a RV 𝑋 with mean 𝑚𝑢 and variance 𝜎2, for any 𝑡 > 0,Pr(|𝑋 − 𝜇| ≥ 𝑡) ≤ 𝜎2𝑡2 .
Proof.  Apply Markov’s starting from Pr(|𝑋 − 𝜇| ≥ 𝑡) = Pr((𝑋 − 𝜇)2 ≥ 𝑡2). ⁠ □
This implies that Pr( 1𝑛 ∑𝑛𝑖=1 𝑋𝑖 − 𝜇 ≥ 𝑡) ≤ 𝜎2𝑛𝑡2 , but once again the number of samples is inverse 
polynomial in 1/𝛿. To get exponential tail bounds, we define a class of Gaussian-like random 
variables that have a Gaussian-like tail. Notice that this similarity stops at the tail and does not 
extend to the body of the distribution unlike CLT. Then, we will prove that this class of RVs is 
suitably closed under interesting operations, such as averaging.

Definition 12  A random variable X is said to be 𝜎2-SubGaussian if 𝔼[𝑒𝑡(𝑋−𝔼𝑋)] ≤ 𝑒𝜎2𝑡2/2.
An important note of caution here is that 𝜎2, being defined in terms of the MGF, in general is 
not equal to the variance of the SubGaussian distribution. Although this equality does hold for 
the Gaussian and Rademacher families, in the broadest terms it is merely an upper bound on the 
variance.

Lemma 13 (Hoeffding's)  Any random variable with support in [𝑎, 𝑏] is (𝑏−𝑎)24 -SubGaussian.

Proof.  In fact, we will prove a weaker result, but using a technique that we will reuse in the future.𝔼𝑋[𝑒𝑡(𝑋−𝔼𝑋)] ≤ 𝔼𝑋,𝑋′[𝑒𝑡(𝑋−𝑋′)] = 𝔼𝑋,𝑋′𝔼𝜂∼{±1}[𝑒𝑡𝜂(𝑋−𝑋′)] ≤ 𝔼𝑋,𝑋′𝑒𝑡2(𝑋−𝑋′)2/2 ≤ 𝑒𝑡2(𝑏−𝑎)2/2
Here, the first inequality introduces an independent copy of the random variable 𝑋′ and follows 
due to Jensen’s, namely that 𝑓(𝔼𝑋) ≤ 𝔼𝑓(𝑋) for any convex function 𝑓 . The only equality follows 
by noting that 𝑋 − 𝑋′ and 𝑋 − 𝑋′ have the same distribution. The second inequality involves 
the MGF of a Rademacher random variable. Overall, we have only proved the result to be (𝑏 − 𝑎)2



-SubGaussian, but we will use the idea of introducing Rademacher random variables later on, and 
this is a good first introduction. ⁠ □
Using this lemma, any bounded distribution, e.g. Bernoulli, is SubGaussian. Before we move on 
to concentration inequalities, let us give alternative characterizations of SubGaussian random 
variables.

Theorem 14  The following four conditions are equivalent, in the sense that all four constants 𝜎1, 𝜎2, 𝜎3, 𝜎4 are within (universal) constant factors of one another.
1. 𝔼[𝑒𝑡(𝑋−𝔼𝑋)] ≤ 𝑒𝜎21𝑡2/2
2. Pr(|𝑋 − 𝔼𝑋| ≥ 𝑡) ≤ 2𝑒−𝑡2/2𝜎22
3. (𝔼[|𝑋 − 𝔼𝑋|𝑝])1/𝑝 ≤ 𝜎3√𝑝 for all 𝑝 ≥ 1
4. 𝔼[𝑒(𝑋−𝔼𝑋)2/𝜎24] ≤ 2

Proof.  (1⇒2) We start with a union bound, and then apply Markov’s on the MGF. Because this 
move is valid for any 𝑡 ≥ 0, we choose the optimal 𝑡 = 𝜀/𝜎21 by minimizing the quadratic.Pr(|𝑋 − 𝔼𝑋| ≥ 𝜀) ≤ 2 Pr(𝑋 − 𝔼𝑋 ≥ 𝜀) = 2 min𝑡≥0 Pr(𝑒𝑡(𝑋−𝔼𝑋) ≥ 𝑒𝑡𝜀)≤ 2𝑒− max𝑡≥0{𝑡𝜀−𝑡2𝜎21/2} = 2𝑒−𝜀2/2𝜎21
(2⇒3) Recall the Γ function and that Γ(𝑘 + 1) ≤ 𝑘𝑘, and then substitute 𝑡 = (2𝜎22𝑧)𝑝/2.𝔼|𝑋 − 𝔼𝑋|𝑝 = ∫∞0 Pr(|𝑋 − 𝔼𝑋|𝑝 ≥ 𝑡)𝑑𝑡 = 2 ∫∞0 𝑒−𝑡2/𝑝/2𝜎22𝑑𝑡= 2𝑝/2+1𝜎𝑝2 ∫∞0 𝑒−𝑧𝑧𝑝/2−1𝑑𝑧 = 2𝑝/2+1𝜎𝑝2Γ(𝑝/2)
(3⇒4) Consider the power series expansion, where we use 𝑘! ≥ (𝑘/𝑒)𝑘 and substitute 𝜎4 = 2√𝑒𝜎3.𝔼[𝑒(𝑋−𝔼𝑋)2/𝜎24] = 1 + ∑𝑘≥1 𝔼[(𝑋 − 𝔼𝑋)2𝑘]𝜎2𝑘4 𝑘! ≤ 1 + ∑𝑘≥1 (𝜎232𝑘)𝑘(𝜎24 𝑘𝑒)𝑘 = 11 − 2(𝜎3/𝜎4)2𝑒 = 2
(4⇒1) This is messy. First, by Taylor’s theorem, 𝑒𝑥 ≤ 1 + 𝑥 + 𝑒|𝑥| 𝑥22 . Taking expectation on both 
sides, we get𝔼[𝑒𝑡(𝑋−𝔼𝑋)] ≤ 1 + 𝑡22 𝔼[(𝑋 − 𝔼𝑋)2𝑒𝑡|𝑋−𝔼𝑋|]≤ 1 + 𝑡22 𝔼[(𝑋 − 𝔼𝑋)2𝑒𝜎24𝑡2/2𝑒(𝑋−𝔼𝑋)2/2𝜎24] ∵ 𝑡𝑥 ≤ 𝜎24𝑡2 + 𝑥2/𝜎242≤ 1 + 𝜎24𝑡22 𝑒𝜎24𝑡2/2𝔼[𝑒(𝑋−𝔼𝑋)2/𝜎24] ≤ (1 + 𝜎24𝑡2)𝑒𝜎24𝑡2/2 ∵ 𝑥2 ≤ 𝑒𝑥2/2≤ 𝑒3𝜎24𝑡2/2 ∵ (1 + 𝑥) ≤ 𝑒𝑥.



⁠ □
Two useful corollaries follow.

Corollary 14.1  If 𝑋1 ∼ SubGaussian(𝜎21) and 𝑋2 ∼ SubGaussian(𝜎22) are independent 
random variables, then 𝑋1 + 𝑋2 ∼ SubGaussian(𝜎21 + 𝜎22).

Proof.  This follows from noting that for independent RVs 𝑋, 𝑌 , 𝔼[𝑒𝑡(𝑋+𝑌 )] = 𝔼[𝑒𝑡𝑋]𝔼[𝑒𝑡𝑌 ] and 
using the MGF characterization. ⁠ □

Corollary 14.2  If 𝑋1 ∼ SubGaussian(𝜎21), 𝑋2 ∼ SubGaussian(𝜎22), then 𝑋1 + 𝑋2 ∼SubGaussian((𝜎1 + 𝜎2)2).

Proof.  Using the moment characterization, for zero-mean random variables, we get(𝔼[|𝑋1 + 𝑋2|𝑝])1/𝑝 ≤ (𝔼[|𝑋1|𝑝])1/𝑝 + (𝔼[|𝑋2|𝑝])1/𝑝 ≤ (𝜎1 + 𝜎2)√𝑝,
where the first (triangle) inequality follows from the fact that ‖𝑋‖𝐿𝑝 = (𝔼[|𝑋|𝑝])1/𝑝 is a (semi) 
norm. ⁠ □
7. Concentration Inequalities for Linear Forms

Proposition 15  Let {𝑋𝑖 ∼ SubGaussian(𝜎2𝑖 )}𝑛𝑖=1 be a collection of 𝑛 independent random 
variables. Then for any 𝑎 ∈ ℝ𝑛, 𝑡 ≥ 0, we havePr(|∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖 − 𝔼[∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖]| ≥ 𝑡) ≤ 2𝑒− 𝑡22 ∑𝑛𝑖=1 𝑎2𝑖 𝜎2𝑖 .

Proof.  This follows from ∑𝑛𝑖=1 𝑎𝑖𝑋𝑖 ∼ SubGaussian(∑𝑛𝑖=1 𝑎2𝑖 𝜎2𝑖 ), using the penultimate corollary. 
⁠ □

A common use case is that of averages, that is, when 𝑎𝑖 = 1/𝑛.

Corollary 15.1  Let {𝑋𝑖 ∼ SubGaussian(𝜎2)}𝑛𝑖=1 be a collection of 𝑛 identically distributed 
independent random variables. Then for any 𝑎 ∈ ℝ𝑛, 𝑡 ≥ 0, we havePr(|1𝑛 ∑𝑛

𝑖=1 𝑋 − 𝔼[𝑋]| ≥ 𝑡) ≤ 2𝑒−𝑛𝑡22𝜎2 .
Thus, for any 𝛿 > 0, with probability at least 1 − 𝛿, we have

| 1𝑛 ∑𝑛
𝑖=1 𝑋𝑖 − 𝔼[𝑋]| ≤ √2𝜎2 log 2𝛿𝑛 .



The moment generating function was seemingly essential for this bound, but the specific choice 𝑥 ↦ 𝑒𝑡𝑋 might feel like an accident. Who is to say that we cannot do better? The following result 
from the theory of large deviations provides some moral support.

Theorem 16 (Cramer)  For any sequence of independent and identically sampled random 
variables 𝑋1, 𝑋2, … with Ψ(𝑡) = 𝔼[𝑒𝑡(𝑋−𝔼𝑋)], we have for any 𝑡 ≥ 0 thatlim𝑛→∞ 1𝑛 log Pr(1𝑛 ∑𝑛

𝑖=1 𝑋𝑖 − 𝔼𝑋 ≥ 𝜀) ≥ − max𝑡≥0 {𝑡𝜀 − log Ψ(𝑡)}.
8. Maximal Inequalities

Lemma 17  Let {𝑋𝑖 ∼ SubGaussian(𝜎2)}𝑛𝑖=1 be a collection of 𝑛 zero-mean random variables. 
Then, for any 𝑡 ≥ 0, we have that𝔼[max𝑖≤𝑛 |𝑋𝑖|] ≤ 𝐶𝜎√log 𝑛,  and Pr(max𝑖≤𝑛 |𝑋𝑖| ≥ 𝑡) ≤ 2𝑛𝑒− 𝑡22𝜎2 .

Proof.  The high probability bound follows from a union bound. We will try to provePr(max𝑖≤𝑛 |𝑋𝑖| ≥ 𝑡) ≤ 2𝑒− 𝑡28𝜎2 log 𝑛 .
If so, then 𝔼[max𝑖≤𝑛|𝑋𝑖|] ≤ ∫∞0 2𝑒− 𝑡28𝜎2 log 𝑛 𝑑𝑡 = 𝐶𝜎√log 𝑛 using the standard Gaussian integral. If 𝑛 ≤ 𝑒𝑡2/4𝜎2 , substituting this into the union bound suffices. In the other case, the RHS of the 
needed inequality is at least one, which is a tautology. ⁠ □
9. Looking Ahead: Nonlinear Functions
In a few weeks, we will revisit concentration inequalities and arrive at a meta-principle: as long 
as 𝑋1, …𝑋𝑛 are independent and 𝑓(𝑋1, …𝑋𝑛) is not too sensitive in any of its arguments, we 
have that Pr(|𝑓(𝑋1, …𝑋𝑛) − 𝔼𝑓(𝑋1, …𝑋𝑛)| > 𝑡) ≤ 𝑒−𝑐𝑛𝑡2.
Formulating this precisely, for different notions of sensitivities, will be both easy and difficult. At 
least one rudimentary form will automatically follow from a Martingale version of the argument we 
just developed. More sophisticated versions will link to deep mathematical ideas, like isoperimetric 
and Poincare inequalities, which, for example, link variance to the expected size of the gradient 
norm.

10. References
1. Primary reference: Chapters 0, 1 and 2 in Vershynin.
2. Alternative: Up to Section 1.4 in Rigollet and Hutter.

https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-2.pdf
https://arxiv.org/pdf/2310.19244


3. To appreciate measurability-related issues: Chapter 1 in Kantor, Matousek, Samal.
4. Concentration of Measure from the perspective of convex geometry: Naor.

https://bookstore.ams.org/stml-75
https://web.math.princeton.edu/~naor/homepage%20files/Concentration%20of%20Measure.pdf


47-837: Statistical Foundations of OR Lecture 2

Statistical Learning Theory
Lecturer: Karan Singh

Our goal in this lecture is to introduce Probably Approximate Correct (PAC) learning and build 
up to the central result in learning theory, namely, that learnability for binary classification is 
exactly characterized by the VC dimension of the underlying hypothesis class. We will see a couple 
of applications of this result: the DKW inequality, and decision-theoretic learning of quantiles. At 
the end, we will also pave an alternative path to learning that relies on generalization through 
algorithmic stability.
But before we introduce the PAC framework, we pay our debt to concentration inequalities for 
nonlinear functions, which will be essential in deriving the results promised earlier.
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1. Martingales
Concentration inequalities for nonlinear functions of independent variables boils down to concen-
tration of linear forms of dependent, but controlled random variables. We will make this concrete 
in the next section. With this motivation, we introduce martingales to capture sequences of such 
dependent random variables.

Definition 1  A sequence of random variables {𝑋𝑖}𝑖≥1 is a martingale if for all 𝑛, we have𝔼[𝑋𝑛+1| 𝑋𝑛, 𝑋𝑛−1, …, 𝑋1] = 𝑋𝑛.



More generally, a sequence of random variables {𝑋𝑖}𝑖≥1 forms a martingale with respect to 
another sequence {𝑌𝑖}𝑖≥1 if for all 𝑛, we have𝔼[𝑋𝑛+1| 𝑌𝑛, 𝑌𝑛−1, …, 𝑌1] = 𝑋𝑛,
where 𝑋𝑛 is measurable in (read as: completely determined given) 𝑌1, …𝑌𝑛. The associated 
sequence {𝑋𝑖+1 − 𝑋𝑖}𝑖≥1 is called a martingale difference sequence.

As an example of martingale, consider prefix sums of independent zero-mean random variables, 
for example, 𝑋𝑛 = ∑𝑖≤𝑛 𝑌𝑖, where 𝑌𝑛 ∼ {±1} are independent, which model random walks in one 
dimension. We can also have non-sum-like sequences, for example, 𝑋𝑛+1 = (1 + 𝑌𝑛+1 sin(𝑋𝑛))𝑋𝑛, 
where 𝑌𝑖’s remain as defined previously.
Historically, the term martingales originates from a certain class of French betting strategies; one 
can still find people puzzled about these on Youtube. The setup is as follows: at any stage one 
can bet any amount of choice on a fair random coin toss, receiving twice the initial amount upon 
success, and nothing on failure. Clearly, there is no way to predict a fair coin toss, and hence, one 
should not expect to make money in this circumstance. But consider the following strategy:
“Starting with a $1 bet in the first round, double the bet upon losing, and quit when you win.”

Since 2𝑛+1 − 1 = 1 + 2 + … + 2𝑛, it is easy to observe that upon winning, one makes up all the 
money lost in the previous rounds and gains an extra dollar, ending up in the green. Winning in 
the long run happens almost surely, and hence, this specious argument seems to guarantee a small 
profit. Of course, one might run out of money this way, but consider having an infinite purse. 
Even then, we can observe that the return 𝑆𝑛 at end of round 𝑛 is distributed as𝑆𝑛 = {1 with probability 1 − 12𝑛−(2𝑛 − 1) with probability 12𝑛
which on expectation is zero. In fact, 𝑆𝑛 forms a martingale sequence. (Verify this!) The almost 
surety of winning happens at the cost of cataclasmic losses with exponential small probability.

2. Bounded Differences Inequality
We generalize the subgaussian character of sums of independent random variables to martingales.

Lemma 2  If Δ𝑗+1|𝑋1:𝑗 = 𝑥1:𝑗 ∼ SubGaussian(𝜎2𝑗 ) for all 𝑥1:𝑗 and 𝑗, and {Δ𝑛} forms a mar-
tingale difference sequence with respect to {𝑋𝑛}, then ∑𝑛𝑖=1 Δ𝑖 ∼ SubGaussian(∑𝑛𝑖=1 𝜎2𝑖 ).

Proof.  The proof follows by repeated applications of 𝔼[𝔼[𝑋|𝑌 ]] = 𝔼[𝑋], while noting that Δ1:𝑗 is 
measurable in 𝑋1:𝑗.



𝔼[𝑒𝑡(∑𝑛𝑖=1(Δ𝑖−𝔼Δ𝑖))] = 𝔼𝑋1:𝑛−1[𝔼𝑋𝑛[𝑒𝑡(∑𝑛𝑖=1(Δ𝑖−𝔼Δ𝑖))|𝑋1:𝑛−1]]= 𝔼𝑋1:𝑛−1[𝔼𝑋𝑛[𝑒𝑡(Δ𝑛−𝔼Δ𝑛)|𝑋1:𝑛−1]𝑒𝑡(∑𝑛−1𝑖=1 (Δ𝑖−𝔼Δ𝑖))]≤ 𝑒−𝑡2𝜎2𝑛/2𝔼[𝑒𝑡(∑𝑛−1𝑖=1 (Δ𝑖−𝔼Δ𝑖))] = … = 𝑒𝑡2 ∑𝑛𝑖=1 𝜎2𝑖 /2
⁠ □

Our main result in this section is that any nonlinear function 𝑓 with independent random variables 
as arguments concentrates to its mean, as long as it can not changed a lot by tweaking a single 
argument in isolation. One unfortunate aspect of this result, although it will suffice for us in this 
lecture, is that the sensitivities to coordinates must be measured in a worst-case sense, that is, by 
fixing the other coordinates to their worst configuration. Time permitting, in later lectures, we 
will fix this and also extend the result to Lipschitz functions.

Theorem 3 (McDiarmid's Inequality)  Consider a 𝑛-variate function 𝑓 : 𝒳︀𝑛 → ℝ. Define𝛿𝑖(𝑥1:𝑛) = max𝑥∈𝒳︀ 𝑓(𝑥1:𝑖, 𝑥, 𝑥𝑖+1:𝑛) − min𝑦∈𝒳︀ 𝑓(𝑥1:𝑖, 𝑦, 𝑥𝑖+1:𝑛).
Then, for any 𝑡 > 0 and 𝑐𝑖 ≥ ‖𝛿𝑖‖∞ ≔ max𝑥1:𝑛 𝛿𝑖(𝑥1:𝑛), we have thatPr(|𝑓(𝑋1, …𝑋𝑛) − 𝔼𝑓(𝑋1, …𝑋𝑛)| ≥ 𝑡) ≤ 2𝑒− 2𝑡2∑𝑛𝑖=1 𝑐2𝑖 .

Proof.  We begin by noting that 𝑓(𝑋1:𝑛) − 𝔼𝑓(𝑋1:𝑛) can be decomposed as𝑓(𝑋1:𝑛) − 𝔼𝑓(𝑋1:𝑛) = 𝑓(𝑋1:𝑛) − 𝔼𝑋𝑛[𝑓(𝑋1:𝑛)|𝑋1:𝑛−1] + 𝔼𝑋𝑛[𝑓(𝑋1:𝑛)|𝑋1:𝑛−1] − 𝔼[𝑓(𝑋1:𝑛)]= ∑𝑛
𝑖=1 𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑖] − 𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑖−1].

Clearly, Δ𝑖 ≔ 𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑖] − 𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑖−1] forms a martingale difference sequence with 
respect to {𝑋𝑛}, since Δ𝑖 is measurable in 𝑋1:𝑖 and𝔼[Δ𝑗+1|𝑋1:𝑗] = 𝔼𝑋𝑗+1[𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑗+1]] − 𝔼[𝑓(𝑋1:𝑛)|𝑋1:𝑗] = 0.
It is plain to see that Δ𝑖 = 𝔼𝑌𝑖,𝑋𝑖+1:𝑛[𝑓(𝑋1:𝑛) − 𝑓(𝑋1:𝑖−1, 𝑌𝑖, 𝑋𝑖+1:𝑛)|𝑋1:𝑖] ≤ 𝑐𝑖, and hence it is 
subgaussian with variance proxy 𝑐2𝑖 /4, by Hoeffding’s lemma. Thus we have fulfilled all the require-
ments of the previous lemma, and hence 𝑓(𝑋1:𝑛) is subgaussian with variance proxy (∑𝑛𝑖=1 𝑐2𝑖 )/4. 
The tail bound immediately follows from this observation. ⁠ □
2.1. Application: Max Cut
As our first example, consider the 𝐺(𝑛, 1/2) family of random graphs. This is a distribution over 
all undirected (simple) graphs over 𝑛 vertices where each pair of distinct vertices is connected by 
an edge with probability 1/2, independently of the other pairs. We are interested in figuring out 
the size of the maximum cut, that is, the the maximum number of edges that cross any partition 
of the vertex set, with probability 0.99. Treating the presence of edges as independent Bernoulli 



variables, any balanced cut, one with nearly equal number of vertices on both sides, has 𝑛24 × 12 =𝑛28  edges on expectation, and is subgaussian with variance proxy 𝑛24 × 12 × (1 − 12) = 𝑛216 . Hence, 
since there are 2𝑛 possible cuts in total, a blind application of the maximal inequality gives the 
size of the maximum cut to be 𝑛28 ± 𝑂(√𝑛216 log 2𝑛) = 𝑛28 ± 𝑂(𝑛3/2).
While the maximal inequality gives the correct expected size of the maxcut as 𝑛28 + 𝐶𝑛3/2, for some 
universal constant 𝐶, using McDiarmid, we will see that the fluctuations due to randomness are 
just ±𝑂(𝑛) in size. To see this, think of the maximum cut as a function of (𝑛2 ) indicator variables 
of individual edges, which go up (or down) by at most one while adding (or removing) an edge, 
that is 𝑐𝑖 = 1. As a consequence, we get the maximum cut lies in 𝑛28 + 𝐶𝑛3/2 ± 𝑂(𝑛).
2.2. Application: Bin Packing
As a second example, consider 𝑛 items of independent random sizes {𝑋𝑖} in the range [0, 1]. Let 𝑌𝑛 
be the minimum number of unit-sized bins required to pack these, where we cannot split an item 
between two bins. Imagine, for example, 𝑋𝑖 ∼ Unif[0, 1], in which case 𝔼[𝑌𝑛] ≥ ⌈∑𝑛𝑖=1 𝑋𝑖⌉ = 𝑛/2. 
Again, 𝑌𝑛 can go up (or down) by at most one by increasing (or decreasing) the size of a single 
item. Hence, 𝑌𝑛 lies in 𝔼[𝑌𝑛] ± 𝑂(√𝑛) with probability 0.99. Thus, although 𝑌𝑛 on any specific 
day involves a NP-hard problem, over provisioning boxes by a vanishingly small fraction fulfills 
the demand with high probability on any day without knowledge of the realized item sizes.

3. PAC Learning
Let us first concretely define the learning task. We will imagine that there is a feature space 𝒳︀ 
and label space 𝒴︀, and on top of this is a data-generating distribution 𝒟︀ supported on 𝒳︀ × 𝒴︀. A 
loss function 𝑙 : 𝒴︀2 → ℝ assigns a loss to the prediction 𝑦 ∈ 𝒴︀ when the correct label is 𝑦 as 𝑙(𝑦, 𝑦). 
In this lecture, we will deal with binary classification, where 𝒴︀ = {0, 1} and 𝑙(𝑦, 𝑦) = 𝟏𝑦≠𝑦, often 
termed the zero-one loss. Given this, we can define the population error of any classifier ℎ to beerr𝒟︀(ℎ) = 𝔼(𝑥,𝑦)∼𝒟︀[𝑙(ℎ(𝑥), 𝑦)] = Pr(𝑥,𝑦)∼𝒟︀(ℎ(𝑥) ≠ 𝑦).
Our first result is a negative one. Note that a random classifier has an error of 1/2. In words, 
the proposition states that no learning algorithm can have a significantly better error without 
observing a constant fraction of all the data points, even if a perfect classifier exists. If 𝒳︀ = {0, 1}𝑑, 
this sample requirement for nontrivial error scales as 2𝑑.
Note that if the latter requirement of a perfect classifier is dropped, then we can take 𝒟︀ to be the 
uniform distribution on 𝒳︀ augmented with Pr(𝑌 = 1|𝑋 = 𝑥) ∼ Be(1/2) for all 𝑥 ∈ 𝒳︀, for which 
even the best classifier can do no better than half on error. But this is a setting in which knowing 𝒟︀ beforehand confers no advantage; hence, this does not capture a failure of learnability.

Proposition 4 (No Free Lunch)  Consider any finite 𝒳︀, and any learning algorithm 
that upon observing 𝑚 samples produces a classifier ℎ𝒜︀. Then, there exists a distribution 𝒟︀ 
supported on 𝒳︀ × {0, 1} such that 𝔼[err𝒟︀(ℎ𝒜︀)] ≥ 12(1 − 𝑚|𝒳︀|) while min𝑓∗∈[0,1]𝒳︀ err𝒟︀(𝑓∗) = 0.



Proof.  Our proof essentially works via Yao’s minimax lemma, although we will not call it by 
name. Instead of constructing a single distribution, we construct a distribution of distributions ℱ︀ 
as follows. For any 𝒚 ∈ {0, 1}𝒳︀, let 𝒟︀𝒚 be the distribution with uniform distribution on 𝒳︀, where 
each 𝑥 ∈ 𝒳︀ has a deterministic label 𝒚(𝑥). Clearly, 𝒚 itself is perfect classifier for 𝒟︀𝒚. Let ℱ︀ be a 
uniform distribution over {𝒟︀𝒚 : 𝒚 ∈ {0, 1}𝒳︀}. Now, we observe for any algorithm 𝒜︀ thatmax𝒚∈{0,1}𝒳︀ 𝔼𝑆𝑚∼𝒟︀𝒚[err𝒟︀𝒚(ℎ𝒜︀)] ≥ 𝔼𝒟︀𝒚∼ℱ︀𝔼𝑆𝑚∼𝒟︀𝒚[err𝒟︀𝒚(ℎ𝒜︀)]

= 𝔼𝑋𝑚∼Unif(𝒳︀)𝔼𝒚∼Unif({0,1}𝒳︀)[ 1|𝒳︀| ∑𝑥∈𝒳︀ 𝟏ℎ𝒜︀(𝑥)≠𝒚(𝑥)]
≥ 𝔼𝑋𝑚∼Unif(𝒳︀)𝔼𝒚∼Unif({0,1}𝒳︀)[ 1|𝒳︀| ∑𝑥∈𝒳︀−𝑋𝑚 𝟏ℎ𝒜︀(𝑥)≠𝒚(𝑥)]
= 𝔼𝑆𝑚[ 1|𝒳︀| ∑𝑥∈𝒳︀−𝑋𝑚 𝔼𝑦∼Unif({0,1})𝟏ℎ𝒜︀(𝑥)≠𝒚(𝑥)] ≥ |𝒳︀| − 𝑚2|𝒳︀| ,

where in the first equality, we use a double sampling argument, namely that sampling 𝒚 uniformly 
randomly and then choosing 𝑚 samples from 𝒟︀𝒚 can also be seen as sampling 𝑚 feature vectors 
from the uniform distribution over 𝒳︀ and them choosing 𝒚 uniformly randomly. In the second 
equality, we use the fact that since components of 𝒚 are independent, even conditioned on 𝑆𝑚, 𝒚(𝑥) is a uniformly random binary label for all 𝑥 ∉ 𝑋𝑚, on which any predict rule makes error 
with probability 1/2. Finally, we note that due to sampling with replacement, 𝑋𝑚 captures at 
most 𝑚 distinct elements from 𝒳︀. ⁠ □
In the face of this impossibility, there can be two responses. The more obvious of these develop-
ments is to limit the class of distributions under consideration, so 𝒟︀ can no longer be arbitrary. 
One can hope that for nice and natural distributions such impossibilities do not arise. For a long 
as time, this was the only approach to learning, as embodied in classical (especially parametric) 
statistics. In this vein, one assumes that the true data-generating distribution 𝒟︀∗ belongs to some 
known class {𝒟︀1, …𝒟︀𝑛}, finite here for simplicity of illustration. As more samples are gathered 
from 𝒟︀∗, one can identify the true distribution, at least in a functional sense. A severe disadvantage 
with this approach is that if 𝒟︀∗ happens to lie outside our considered class, it is unclear how 
a learning algorithm of this sort performs, or if it converges, or if it does, does the convergent 
distribution yield a reasonable classifier for the true distribution.
The other recourse, and perhaps the defining choice in learning theory, is to redefine the notion of 
success and seek a different sort of learning guarantee. Instead of limiting 𝒟︀∗, we choose a limited 
hypothesis class ℋ︀ = {ℎ1, …ℎ𝑛}. Instead of succeeding in absolute terms, success of an (agnostic) 
learning algorithm lies in ensuring that the classifier it produces is almost as good as the best 
hypothesis in ℋ︀. The advantage is immediate: by choosing ℋ︀ to be the set of Bayes-optimal 
classifiers for {𝒟︀1, …𝒟︀𝑛}, one can ensure that the classifier produced is as good as the best classifier 
for the true data-generating distribution 𝒟︀∗, if 𝒟︀∗ lies in the aforementioned set, thus recovering 
the classical statistical guarantee. On the other hand, robustness to the latter assumption is built 
in, insofar that, even if all our models of 𝒟︀∗ were wrong, we still retain performance as good as 
the best hypothesis in ℋ︀; thus this approach degrades the right way against mis-specification. 



This way of thinking in terms of a relative error guarantee is something even experts in other 
(classical) fields find hard to accept – although the acceptance is growing by the day – perhaps 
because hypothesis classes embody solution concepts and do not produce an explicit mechanistic 
description of how the data was generated. But to the extent one cares about minimizing the loss, 
this approach cannot be beat.
We begin with the definition of realizable PAC learning that makes the above setting concrete, 
but also does not quite deliver on what was promised. The realizability assumption here is that 
there exists a perfect classifier in the hypothesis class ℋ︀, or in other words, the learning guarantee 
only extends distributions 𝒟︀ for which this condition holds.

Definition 5  A hypothesis class ℋ︀ ⊆ 𝒴︀𝒳︀ is realizable PAC learnable if there exists a sample 
complexity 𝑚 : (0, 1)2 → ℕ and a learning algorithm 𝒜︀, which for any 𝜀, 𝛿 > 0 and distribution 𝒟︀ supported on 𝒳︀ × 𝒴︀, upon taking 𝑚(𝜀, 𝛿) samples produces a classifier ℎ𝒜︀ : 𝒳︀ → {0, 1} 
such that with probability at least 1 − 𝛿, we haveerr𝒟︀(ℎ𝒜︀) ≤ 𝜀,
as long as there exists an ℎ∗ ∈ ℋ︀ such that err𝒟︀(ℎ∗) = 0.

The more general model, but one which is also computationally challenging, is agnostic PAC 
learning, which forgoes the realizability assumption, and gives a relative error guarantee, instead 
of an absolute one. The sample requirement here is also generally higher, as we will see.

Definition 6  A hypothesis class ℋ︀ ⊆ 𝒴︀𝒳︀ is agnostic PAC learnable if there exists a sample 
complexity 𝑚 : (0, 1)2 → ℕ and a learning algorithm 𝒜︀, which for any 𝜀, 𝛿 > 0 and distribution 𝒟︀ supported on 𝒳︀ × 𝒴︀, upon taking 𝑚(𝜀, 𝛿) samples produces a classifier ℎ𝒜︀ : 𝒳︀ → {0, 1} 
such that with probability at least 1 − 𝛿, we haveerr𝒟︀(ℎ𝒜︀) ≤ minℎ∗∈ℋ︀ err𝒟︀(ℎ∗) + 𝜀.

4. Finite Classes
As a warm-up, in this section, we consider the task of learning finite classes ℋ︀. Along the way, 
we will develop the framework of learning infinite class (not all of are learnable!), which is our 
ultimate goal. For any 𝑚-sized sample set 𝑆 ⊆ 𝒳︀ × 𝒴︀, let err𝑆(ℎ) = 1𝑚 ∑𝑚𝑖=1 𝑙(ℎ(𝑥𝑖), 𝑦𝑖) be the 
empirical error of the hypothesis ℎ. We begin with realizable learning.

Theorem 7  Any finite hypothesis class ℋ︀ is realizable PAC learnable with𝑚(𝜀, 𝛿) = 𝑂(log(|ℋ︀|/𝛿)𝜀 ) samples.
Proof.  Certifying PAC learnability requires specifying a learning algorithm. We choose the 
most obvious one, namely, pick ℎ𝒜︀ ∈ ℋ︀ arbitrarily as long as err𝑆(ℎ𝒜︀) = 0. Due to realizability, 



generically, such a choice always exists, else our claim is vacuous. What does failure to learn mean? 
Define ℋ︀Bad = {ℎ ∈ ℋ︀ : err𝒟︀(ℎ) > 𝜀}. Now, failure is synonymous with ℎ𝒜︀ in ℋ︀Bad, which only 
happens if there is a hypothesis ℎ in ℋ︀Bad with err𝑆(ℎ) = 0. Now fix any ℎ ∈ ℋ︀Bad. We havePr(err𝑆(ℎ) = 0) = ∏𝑚𝑖=1 Pr(ℎ(𝑥𝑖) = 𝑦𝑖) = (1 − 𝜀)𝑚,Pr(err𝒟︀(ℎ𝐴)) ≤ ∑ℎ∈ℋ︀Bad Pr(err𝑆(ℎ) = 0) = |ℋ︀Bad|(1 − 𝜀)𝑚 ≤ |ℋ︀|𝑒−𝜀𝑚,
where we use the inequality 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥, concluding the claim. ⁠ □
For the agnostic case, we introduce the concept of uniform convergence, which requires that with 
enough samples, the maximum difference between the population error and the sample error across 
all hypothesis in the class can be made arbitrarily small. This means that the performance on the 
sample set transfers to the population. We will reuse this notion for infinite hypothesis classes.

Definition 8  A hypothesis class ℋ︀ ⊆ 𝒴︀𝒳︀ exhibits uniform convergence with sample 
complexity 𝑚UC : (0, 1)2 → ℕ if, for any 𝜀, 𝛿 > 0, upon taking 𝑚UC(𝜀, 𝛿) samples from any 
distribution 𝒟︀, supported over 𝒳︀ × 𝒴︀, to form 𝑆, we have with probability at least 1 − 𝛿 thatmaxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)| ≤ 𝜀.

We will now see that uniform convergence immediately implies agnostic PAC learnability.

Theorem 9  If a hypothesis class ℋ︀ exhibits uniform convergence, then it is agnostic PAC 
learnable with sample complexity 𝑚(𝜀, 𝛿) = 𝑚UC(𝜀2, 𝛿)

Proof.  Again, we start with the learning algorithm, which picks ℎ𝒜︀ ∈ arg minℎ∈ℋ︀ err𝑆(ℎ) arbi-
trarily. Let ℎ∗ ∈ arg minℎ∈ℋ︀ err𝒟︀(ℎ). By uniform convergence, with probability 1 − 𝛿, we haveerr𝒟︀(ℎ𝒜︀) ≤ err𝒮︀(ℎ𝒜︀) + 𝜀 ≤ err𝒮︀(ℎ∗) + 𝜀 ≤ err𝒟︀(ℎ∗) + 2𝜀,
completing the proof. ⁠ □
While in general uniform convergence arguments require some care, for finite classes, uniform 
convergence follows essentially by a union bound.

Theorem 10  Any finite hypothesis class ℋ︀ exhibits uniform convergence with𝑚UC(𝜀, 𝛿) = 𝑂(log|ℋ︀|/𝛿𝜀2 ) samples.
Proof.  Since 𝔼𝑆err𝑆(ℎ) = err𝒟︀(ℎ) for any fixed hypothesis ℎ, we observe thatPr(maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)| > 𝜀) ≤ ∑ℎ∈ℋ︀ Pr(|err𝒟︀(ℎ) − err𝑆(ℎ)| > 𝜀) ≤ 2|ℋ︀|𝑒−2𝑛𝜀2,



where the last inequality follows from the tail bound for averages from the last lecture. ⁠ □
Combining the previous two results, we get the following corollary concerning the agnostic learning 
of finite hypothesis classes.

Corollary 10.1  Any finite hypothesis class ℋ︀ is agnostic PAC learnable with𝑚(𝜀, 𝛿) = 𝑂(log(|ℋ︀|/𝛿)𝜀2 ) samples.
5. VC Dimension
Now, we are ready to extend learnability to infinite hypothesis classes. Not all hypothesis classes 
are learnable. Hence, a key question is to find out when learning is possible for infinite classes, by 
coming up with an appropriate notion of size for hypothesis classes.

Definition 11  For 𝐶 = {𝑥1, …𝑥𝑚} ⊆ 𝒳︀ of finite size and hypothesis class ℋ︀ ⊆ {0, 1}𝒳︀, letℋ︀𝐶 = {(ℎ(𝑥1), …ℎ(𝑥𝑚)) : ℎ ∈ ℋ︀}
be the set of labelings ℋ︀ induces on 𝐶. The VC dimension VC(ℋ︀) of a hypothesis class ℋ︀ 
is the size of the largest set with |ℋ︀𝐶| = 2|𝐶|, in other words, where all possible labelings are 
realized by ℋ︀.

To state this explicitly, to establish that VC(ℋ︀) = 𝑑 for a class ℋ︀, we must establish that there 
exists at least one set 𝐶 of size 𝑑 where all possible labelings of 𝐶 are realized, thus, the VC 
dimension is at least 𝑑, and further that all larger sets have at least one unrealizable labeling, 
implying the VC dimension is strictly less than 𝑑 + 1.
Let us look at a few examples.

1. For 𝒳︀ = ℝ, ℋ︀ = {𝟏𝑥≤𝑎 : 𝑎 ∈ ℝ} has VC dimension one. Clearly, on 𝐶 = {0}, this class real-
izes a positive label by choose 𝑎 = 1 and a negative label by choosing 𝑎 = −1. Furthermore, 
for any two point set 𝐶 = {𝑎, 𝑏} where 𝑎 ≤ 𝑏 generically, a negative label on 𝑎 and a positive 
label on 𝑏 are not realizable simultaneously. Similarly, VC({𝟏𝑥≥𝑎 : 𝑎 ∈ ℝ}) = 1.

2. Take 𝒳︀ = ℝ. The VC dimension of ℋ︀ = {𝟏𝑎≤𝑥≤𝑏 : 𝑎, 𝑏 ∈ ℝ} is two. It is easy to see that 
there exists a two-point set, e.g., {0, 1}, where all possible labelings are realized. For any 
three-point set {𝑎, 𝑏, 𝑐} with 𝑎 ≤ 𝑏 ≤ 𝑐, a negative label in the middle and positive labels at 
extremities is unrealizable.

3. Take 𝒳︀ = ℝ2. The VC dimension of all (closed) axis-aligned rectangles is four. Note that 
not all four point sets, e.g., {(0, 0), (0, 1), (1, 0), (1, 1)}, can be assigned arbitrary labelings, 
but that’s okay, because we just need to show one four-point set that can be labeled in all 
possible ways. Such a set exists, e.g., {(1, 0), (0, 1), (−1, 0), (0, −1)}. Arguing that every five-
point set has an unrealizable labeling is trickier. The cleanest argument here is that the 
smallest axis-aligned rectangle containing any five-point set is also the smallest axis-aligned 



rectangle for some four-point subset of the original set. Hence, the point in the “middle” can 
not be assigned a label independently of the other four.

6. Learning VC Classes
At this point, it might not be obvious why VC dimension is the correct notion of size for learning. 
The theorem on sufficiency will shed some light on this, but far more obvious is the fact that finite 
VC dimension is necessary for learning.

Corollary 4.1  For any hypothesis class ℋ︀ with infinite VC dimension, and learning 
algorithm 𝒜︀ that produces the classifier ℎ𝒜︀ after seeing 𝑚 samples, for any 𝜀 > 0, there exists 
a distribution 𝒟︀ such that 𝔼[err𝒟︀(ℎ𝒜︀)] ≥ 12 − 𝜀 and minℎ∈ℋ︀ err𝒟︀(ℎ) = 0. Thus, a finite VC 
dimension is necessary for realizable (and hence also agnostic) PAC learning.

Proof.  Since the VC dimension of ℋ︀ is unbounded, we can find arbitrarily large subsets 𝐶 of 𝒳︀ 
on which ℋ︀ can realize all possible labelings. We apply Proposition 4 to such a set of size 𝑚/𝜀. ⁠ □
In fact, from a quick examination of the proof of Proposition 4, we can also see that the sample 
complexity of realizable and agnostic learning must scale as Ω(VC(ℋ︀)), although the argument 
does not by itself imply a correct, that is, tight, bound on other parameters.
Now, we will prove that a finite VC dimension is sufficient for learning. We will focus on the 
agnostic case, which also implies realizable learnability. In fact, we will prove a near-optimal sample 
complexity bound for agnostic PAC learning. This proof is interesting to the extent that it will 
involve all little probabilistic tools that we have developed so far, ranging from symmetrization to 
maximal inequalities and McDiarmid’s inequality.

Theorem 12  Any hypothesis class ℋ︀ with a finite VC dimension 𝑑 exhibits uniform 
convergence with sample complexity𝑚UC(𝜀, 𝛿) = 𝑂(𝑑 + log 1/𝛿𝜀2 ).

Proof.  In fact, we will prove a bound of 𝑂((𝑑 log 𝑑/𝜀 + log 1/𝛿)/𝜀2) on the sample complexity, 
which is worse by logarithmic factors, because proving the tight bound, although very much in 
reach of the present course, is slightly painful.
Fix any hypothesis class ℋ︀ with VC dimension 𝑑, and a random sample set 𝑆 of size 𝑚 drawn from 𝒟︀. Notice that 𝑆 ↦ maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)| goes up (or down) by at most one on changing a 
sample. Hence, by Theorem 3, we get thatPr(|maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)| − 𝔼𝑆[maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)|] ≥ 𝑡|) ≤ 2𝑒−2𝑚𝑡2.
To make the right side at most 𝛿, 𝑚 needs to be at least log(2/𝛿)/𝜀2. This explains the second 
term in the sample complexity.



Lemma 13  For a sample set of size 𝑚 and a class of VC dimension 𝑑, we have that𝔼𝑆[maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)|] ≤ 𝑂(√𝑑 log 2𝑚𝑚 ).
To conclude the claim and note the necessity of the first term in the sample complexity, we use 
the maximal inequality above that specifically deals with VC classes. ⁠ □
Proof of Lemma 13.  On the face of it, Lemma 13 looks exactly like the standard maximal 
inequality. After all, err𝑆(ℎ) − err𝒟︀(ℎ) for any fixed ℎ is exactly zero-mean and, being an average 
over 𝑚 independent samples, subgaussian with variance proxy 1/𝑚. The catch is that the standard 
maximal inequality scales here as √log|ℋ︀|, which is just a fancy way of recovering our finite 
hypothesis results. With some manipulation, we will show the effective size of ℋ︀, one that matters 
here anyway, is 𝑂(𝑚𝑑), using the lemma below.

Lemma 14 (Sauer-Shelah-Perles Lemma)  For any hypothesis class ℋ︀ with VC dimen-
sion 𝑑 and a set 𝐶 of size 𝑚 on the same feature space, we have that|ℋ︀𝐶| ≤ ∑𝑑

𝑘=0(𝑚𝑘 ).
In particular, if 𝑚 is at least 𝑑, then |ℋ︀𝐶| ≤ 𝑂(𝑚𝑑).

The main trick is to use symmetrization. Observe the following sequence of inequalities.𝔼𝑆[maxℎ∈ℋ︀|err𝒟︀(ℎ) − err𝑆(ℎ)|]=1 𝔼𝑆[maxℎ∈ℋ︀|𝔼𝑆′err𝑆′(ℎ) − err𝑆(ℎ)|]≤2 𝔼𝑆,𝑆′[maxℎ∈ℋ︀|err𝑆′(ℎ) − err𝑆(ℎ)|]= 𝔼𝑆,𝑆′[maxℎ∈ℋ︀| 1𝑚 ∑𝑚𝑖=1(𝑙(ℎ(𝑥′𝑖), 𝑦′𝑖) − 𝑙(ℎ(𝑥𝑖), 𝑦𝑖))|]
=3 𝔼𝑆,𝑆′[𝔼𝜎∼{±1}𝑚[maxℎ∈ℋ︀| 1𝑚 ∑𝑚𝑖=1 𝜎𝑖(𝑙(ℎ(𝑥′𝑖), 𝑦′𝑖) − 𝑙(ℎ(𝑥𝑖), 𝑦𝑖))| | 𝑆, 𝑆′]]
=4 𝔼𝑆,𝑆′[𝔼𝜎∼{±1}𝑚[ maxℎ∈ℋ︀𝑆∪𝑆′| 1𝑚 ∑𝑚𝑖=1 𝜎𝑖(𝑙(ℎ(𝑥′𝑖), 𝑦′𝑖) − 𝑙(ℎ(𝑥𝑖), 𝑦𝑖))| | 𝑆, 𝑆′]]
≤5 𝐶√log max𝑆⊆𝒳︀,|𝑆|≤2𝑚|ℋ︀𝑆|𝑚≤6 𝑂(√𝑑 log 𝑚𝑚 )



Here (1) introduces 𝑆′ as 𝑚 samples, chosen independently from 𝑆, and (2) follows from Jensen’s 
inequality, while noting that 𝑥 ↦ |𝑥| is a convex function, and taking a maximum over a family of 
functions preserves convexity. Step (3) follows from noting that for any 𝑆, 𝑆′ exchanging the corre-
sponding samples between these at any index 𝑖 results in a new pair of sets that are equiprobable. 
The key step is (4), where we narrow ℋ︀ to ℋ︀𝑆∪𝑆′ , since the quantity being maximized only 
depends on the samples via the signs realized by ℋ︀ on the same set. Step (5) follows by the 
standard maximal inequality, having fixed 𝑆, 𝑆′. In step (6), we apply Lemma 14.
Thus, we have the desired claim. But it is worth taking a moment to appreciate why all the 
machinations above were needed. Clearly, replacing the population error by the sample error on 
newly sampled points was instrumental in ultimately narrowing ℋ︀ to ℋ︀𝑆∪𝑆′ , by saying that only 
the signs realized on some 2𝑚 points matter. But, one might also be tempted to directly use the 
maximal inequality at the end of step (2), without introducing Rademacher random variables. 
This idea fails. While even at the end of step (2) we could have narrowed ℋ︀ to ℋ︀𝑆∪𝑆′ , now the 
index set being maximized over is stochastic, while an implicit promise in the maximal inequality 
is that the index set is deterministic, or at lease independent of other sources on randomness. Had 
we conditioned on 𝑆, 𝑆′ at this stage, that would have fixed the stochastic index set, but made 
the remaining quantity deterministic too, losing the subgaussian character. ⁠ □
Before proving Lemma 14, let us take a second to review its implication. It says for any class with 
bounded VC dimension, the number of labelings grows polynomially in the size of the set. If on 
the other hand, the VC dimension is infinite, then, by definition, there are sets of any needed 
size where the number of labelings are exponentially many. The lemma rules out all possibilities 
in the middle, that is, those associated with a superpolynomial but subexponential growth for 
all sets simultaneously. This is also why VC dimension sharply characterizes learnability. Each 
class is either learnable, to a nontrivial degree, with a constant number of samples, or unlearnable 
altogether. There is no in-between.
Proof of Lemma 14.  The proof proceeds by induction on 𝑚 + 𝑑. The base cases can be verified 
separately. Fix a hypothesis class ℋ︀ with VC dimension 𝑑 and a set 𝐶 = {𝑥1, …𝑥𝑚} ⊆ 𝒳︀. Let 𝐶′ = 𝐶 − {𝑥1} and ℋ︀′ = {ℎ ∈ ℋ︀ : ∃ℎ′ ∈ ℋ︀, ℎ′(𝑥1) = 1 − ℎ(𝑥1)}. Now, we claim that|ℋ︀𝐶| = |ℋ︀𝐶′| + |ℋ︀′𝐶′|.
In words, all labelings of 𝐶′ have either a unique extension to 𝐶 under ℋ︀, in which case they are 
counted in the first term, or admit two extensions, with both ± signs on 𝑥1, to 𝐶, in which case 
they are accounted for once in the first term and again in the second term.
Let us construct another hypothesis class ℋ︀″ which is the same as ℋ︀′ except that 𝑥1 is not in 
its domain. (If this makes you uneasy, it is also fine to assign all of ℋ︀″ an arbitrary label on 𝑥1.) Since 𝐶′ does not contain 𝑥1, ℋ︀′𝐶′ and ℋ︀″𝐶′ are identical. Further, we claim that the VC 
dimension of ℋ︀″ is at most 𝑑 − 1, because if all labelings of a set 𝐷 are attained by ℋ︀″, then ℋ︀ 
attains all labelings on 𝐶 ∪ {𝑥1}. We then apply the inductive hypothesis on ℋ︀𝐶′ and ℋ︀″𝐶′ to get|ℋ︀𝐶| ≤ ∑𝑑

𝑘=0(𝑚 − 1𝑘 ) + ∑𝑑−1
𝑘=0(𝑚 − 1𝑘 ) = (𝑚 − 10 ) + ∑𝑑

𝑘=1((𝑚 − 1𝑘 ) + (𝑚 − 1𝑘 − 1 )) = ∑𝑑
𝑘=0(𝑚𝑘 ),



where we use the identity that (𝑚𝑘 ) = ( 𝑚𝑘−1) + (𝑚−1𝑘−1 ). The following display completes the final 
clause, as long as 𝑚 ≥ 𝑑.|ℋ︀𝐶| ≤ (𝑚𝑑 )𝑑 ∑𝑑

𝑘=0(𝑚𝑘 )( 𝑑𝑚)𝑘 ≤ (𝑚𝑑 )𝑑(1 + 𝑑𝑚)𝑚 ≤ (𝑚𝑒𝑑 )𝑑
⁠ □

Using Theorem 9, uniform convergence of finite VC classes implies agnostic PAC learnability.

Corollary 14.1  Any hypothesis class ℋ︀ with a finite VC dimension 𝑑 is agnostic PAC 
learnable with sample complexity𝑚(𝜀, 𝛿) = 𝑂(𝑑 + log 1/𝛿𝜀2 ).

Finally, we remark the sample complexity derived above can be improved to scale as 1/𝜀 in the 
realizable case. The proof of this result utilizes a nice double sampling argument.

6.1. Application: DKW Inequality
Consider the task of estimating the CDF 𝐹  of a continuous real-valued random variable given 𝑚 
independent samples. A natural choice of the estimator is𝐹(𝑡) = 1𝑚 ∑𝑚𝑖=1 𝟏𝑥𝑖≤𝑡
Using subgaussian tail bounds, for any fixed 𝑡, Pr(|𝐹(𝑡) − 𝐹(𝑡)| ≥ 𝑡) ≤ 2𝑒−2𝑚𝑡2 . The Dvoeretzky-
Keifer-Wolfowitz inequality says the same bound holds uniformly, without needing a union bound.

Theorem 15 (DKW Inequality)  Pr(sup𝑡∈ℝ|𝐹(𝑡) − 𝐹(𝑡)| ≥ 𝑡) ≤ 2𝑒−2𝑚𝑡2
The proof is a simple application of Theorem 12 – this is after all a statement about uniform 
convergence – if one were willing to ignore the precise constants, since the VC dimension of the 
indicator variables of {(−∞, 𝑎] : 𝑎 ∈ ℝ} is one. In terms of history, the DKW inequality predates 
VC theory by a good couple of decades.

6.2. Application: Learning Quantiles
Consider an inventory replenishment problem for nondurable goods, typically termed the newsven-
dor problem. At the end of each day, a store owner owners orders 𝑎 goods to delivered the next 
morning. The stochastic demand 𝑋 ∈ [0, 1] is realized the next day. The resultant loss is𝑙(𝑋, 𝑎) = 𝜌[𝑋 − 𝑎]+ + (1 − 𝜌)[𝑎 − 𝑋]+,
which imposes unequal penalties for over and under meeting the demand. Here [𝑋 − 𝑎]+ =max{𝑋 − 𝑎, 0}. We are interested in pick an action that minimizes the expected cost 𝔼𝑋[𝑙(𝑋, 𝑎)]. 
Since 𝑎 ↦ 𝑙(𝑋, 𝑎) is convex, the subgradient is



𝑑𝑑𝑎𝔼𝑋[𝑙(𝑋, 𝑎)] = 𝔼𝑋[𝜌𝟏𝑋>𝑎 − (1 − 𝜌)𝟏𝑋≤𝑎] = 𝜌 Pr(𝑋 > 𝑎) − (1 − 𝜌) Pr(𝑋 ≤ 𝑎),
and hence the optimal choice 𝑎 is the bottom 𝜌-quantile of 𝒟︀.
What can we do if 𝒟︀ is unknown and instead we observe 𝑚 samples from 𝒟︀? By the DKW 
inequality, we can choose 𝑎 to be the bottom 𝜌-quantile of observed samples, and guarantee that 𝐹(𝑎) = 𝜌 ± 𝑂(1/√𝑚) with probability 0.99. An exercise in integration by parts gives (Verify!)𝔼𝑋[𝑙(𝑋, 𝑎)] = 𝜌 ∫1𝑎 Pr(𝑋 ≥ 𝑥)𝑑𝑥 + (1 − 𝜌) ∫𝑎−1 Pr(𝑋 ≤ 𝑥)𝑑𝑥.
Now, we can see how good 𝑎 is by observing𝔼𝑋[𝑙(𝑋, 𝑎)] − 𝔼𝑋[𝑙(𝑋, 𝑎∗)] = ∫𝑎∗

𝑎̂ (𝜌 − 𝐹(𝑥))𝑑𝑥 ≤ 𝑂( 1√𝑚).
7. Algorithmic Stability
The plan here was to carve an alternative path to generalization and learning via (uniform) 
stability of the learning algorithm. Instead of focusing on the characteristics of the hypothesis 
class, this is an algorithm-centric approach. Being short on time, we will instead consider a simple 
example that deals with Leave-One-Out (LOO) stability and proves generalization in expectation.

Definition 16  The Leave-One-Out (LOO) stability Δ(𝒜︀, 𝑆𝑚+1) of a learning algorithm 𝒜︀ 
with respect to a sample 𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑚+1] of size 𝑚 + 1 is defined asΔ(𝒜︀, 𝑆) = 1𝑚 + 1 ∑𝑚+1

𝑖=1 (𝑙(ℎ𝒜︀𝒾︀(𝑥𝑖), 𝑦𝑖) − 𝑙(ℎ𝒜︀(𝑥𝑖), 𝑦𝑖)),
where the algorithm 𝒜︀ receives 𝑆𝑚+1 as its input and 𝒜︀𝑖 receives all samples but (𝑥𝑖, 𝑦𝑖).

The following is a funny sort of in-expectation generalization guarantee that compares the 
population error of an algorithm that is given 𝑚 samples to the in-sample error on 𝑚 + 1 samples, 
instead of 𝑚 as one would expect. Nevertheless, this will suffice for our application. In fact, for 
reasonable learning algorithms, for example, if one chooses a hypothesis with the smallest error 
on training data, this upper bounds the usual generalization error in expectation, up to a small 1/𝑚 additive term (Verify this!).

Theorem 17  For any distribution 𝒟︀, we have that𝔼𝑆𝑚[err𝒟︀(ℎ𝒜︀′)] = 𝔼𝑆𝑚+1[err𝑆𝑚+1(ℎ𝒜︀)] + 𝔼𝑆𝑚+1[Δ(𝒜︀, 𝑆𝑚+1)],
where 𝒜︀′ and 𝒜︀ receive 𝑆𝑚 and 𝑆𝑚+1 as their inputs, respectively.

Proof.  The proof is a simple consequence of the definition.



𝔼𝑆𝑚+1[Δ(𝒜︀, 𝑆𝑚+1)] = 1𝑚 + 1 ∑𝑚+1
𝑖=1 𝔼𝑆𝑚+1[𝑙(ℎ𝒜︀𝒾︀(𝑥𝑖), 𝑦𝑖)] − 𝔼𝑆𝑚+1[ 1𝑚 + 1 ∑𝑚+1

𝑖=1 𝑙(ℎ𝒜︀(𝑥𝑖), 𝑦𝑖)]
= 1𝑚 + 1 ∑𝑚+1

𝑖=1 𝔼𝑆𝑚𝔼(𝑥,𝑦)∼𝒟︀[𝑙(ℎ𝒜︀′(𝑥), 𝑦)] − 𝔼𝑆𝑚+1[err𝑆𝑚+1(ℎ𝒜︀)]= 𝔼𝑆𝑚[err𝒟︀(ℎ𝒜︀′)] − 𝔼𝑆𝑚+1[err𝑆𝑚+1(ℎ𝒜︀)]
⁠ □

As an application, consider the task of learning 𝑑-dimensional axis-aligned rectangles in the real-
izable case. Our learning algorithm in this case simply outputs the smallest axis-aligned rectangle 
containing all positive examples. The empirical error given any number of samples is zero. We will 
soon see that the worst-case LOO stability over any 𝑚 + 1 example is at most 2𝑑𝑚+1 . Hence, this 
algorithm given 𝑚 samples has a population error of at most 2𝑑𝑚+1 , matching the sample complexity 
of 𝑂(𝑑/𝜀) we would get from the VC approach. To see this bound on the LOO stability, note that 
the smallest rectangle is supported by at least one sample on every one of its 2𝑑 facets, and a 
facet shifts only if all samples supporting it are deleted, and thus, 𝒜︀𝑖 and 𝒜︀ are identical on all 
except at most 4 indices.
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Assignment 1
Lecturer: Karan Singh

1. Lower Bounds on Approximate Caratheodory (10 points)
We will show that the Approximate Caratheory’s theorem can not be improved in high dimensions. 
For any dimension 𝑑, construct a set 𝑋 ⊆ ℝ𝑑 contained in 𝔹2 = {𝑥 : ‖𝑥‖2 ≤ 1} and a point 𝑦 in 
the convex hull of 𝑋 so that for all 𝑘 we havemin{𝑥1,…𝑥𝑘}∈𝑋 min𝛼𝑖≥0∑𝑘𝑖=1 𝛼𝑖=1 ‖𝑦 −∑𝑛𝑖=1 𝛼𝑖𝑥𝑖‖2 ≥ √1𝑘 − 1𝑑.
2. Pairwise Independence (10 points)
The purpose of this exercise is to demonstrate a specific sense in which pairwise independence 
is a much weaker condition than full independence. Concretely, given access to 𝑛 independent 
Rademacher variables, provide a deterministic recipe to construct at least 𝑒𝑐𝑛 pairwise independent 
Rademacher variables for any 𝑐 > 0 of your choice.

3. Random MaxCut (10 points)
Consider a random graph on 𝑛 vertices where each pair of vertices has a edge with probability 1/2, independently of other pairs. Every subset of vertices is associated with a cut, namely, edges 
with exactly one endpoint in a subset; the size of the cut is the number of such edges. Prove that 
with probability at least 0.999, the maximum cut of such a graph is within 𝑓(𝑛) ± 𝑔(𝑛). Try to 
find the best such 𝑓(𝑛) and 𝑔(𝑛), but do not worry about the leading constant in 𝑔(𝑛).
4. VC Dimension Examples (10 points)
Calculate the VC dimensions of:

1. The set of halfspaces (i.e., 𝟏𝑎⊤𝑥+𝑏≥0:𝑎∈ℝ𝑛,𝑏∈ℝ) in 𝑛-dimensions
2. The set of 𝑛-dimensional spheres.

Lastly, prove for any ℋ︀1 and ℋ︀2 defined over the same feature space thatVC(ℋ︀1 ∪ℋ︀2) ≤ VC(ℋ︀1) + VCℋ︀2) + 1.
Hint: Radon’s theorem can be useful for the first part.



5. Sparse Predictors (10 points)
Consider 𝒳︀ = ℝ𝑛, and ℋ︀𝑘 = {𝟏𝑎⊤𝑥+𝑏≥0 : 𝑎 ∈ ℝ𝑛, 𝑏 ∈ ℝ, ‖𝑎‖0 ≤ 𝑘} be the class of linear predictors 
that depend on at most 𝑘 coordinates. Prove that:

1. VC(ℋ︀1) is at least Ω(log 𝑛).
2. VC(ℋ︀𝑘) is at most 𝑂(𝑘 log 𝑛𝑘).

6. Learning by Asking is Faster (10 points)
The point of this exercise to show that if you are allowed to ask for the correct labels for points of 
your choice, you can learn with far less labeling/supervision. Concretely, construct a hypothesis 
class ℋ︀ ⊆ {0, 1}[0,1] such that both conditions below are satisfied simultaneously:

• ℋ︀ is (realizable) PAC learnable with sample complexity Ω(log(1/𝛿)/𝜀).
• Consider a model where the learner can (A) query the correct label for any given feature 

vector, and (B) additionally draw an infinite number of samples from the marginal distrib-
ution of 𝒟︀ on the feature space (without labels). It must be that, for any distribution 𝒟︀, as 
long as err𝒟︀(ℎ) = 0 for some ℎ ∈ ℋ︀, a learning algorithm can make 𝑂(log(1/𝜀)) such queries 
to produce a ℎ𝒜︀ ∈ ℋ︀ such that err𝒟︀(ℎ𝒜︀) ≤ 𝜀.


