47-837: Statistical Foundations of OR Lecture 1

Basic Concentration Inequalities

Lecturer: Karan Singh

This course is about both negotiating uncertainty and using randomness in decision making. Most
modern-day decision making systems (think, for example, ride-share) operate while dealing with
multiple sources of randomness: Can we describe them well using deterministic systems? Do the
particulars of uncertainties they are subject to actually matter? What are the aggregate statistical
properties of such algorithms? The goal here is to provide just enough foundational knowledge so
that the students can dive deeply into these data-driven optimization and algorithm design.

In general, we will weave through a potpourri of topics. We will start with basic concentration
inequalities in the first week and discuss Bayesian statistics and causal inference the week after.
After switching to a couple of weeks on statistical learning and sequential prediction, we will survey
statistical fairness in the decision-making context. The final topic will be the information-theoretic
limits of performance for data-driven algorithms.
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1. Convexity

Definition 1 A set S C vector space V is convex if for all z,y € S and X € [0,1], Az + (1 —
ANy € S.

Note that S, , = {Az+ (1 —=A)y: A €[0,1]} is a line segment that connects z and y. In other
words, a convex set contains all line segments whose endpoints lie inside the set.



Definition 2 A function f: X — R, where X is a convex set, is said to be convex if Vz,y €
X, VA e [0,1], f(Az+ (1= A)y) < Af(z) + (1= A)f(y).

In other words, for a convex function, the function value at any interpolation is (weakly) less than
the interpolated function values.

Definition 3 The convex hull of a set X C some vector space V is the smallest convex set
that contains X.

Here, the notion of smallness is with respect to inclusion, that is, A is smaller than B if A C B.
Therefore, incomparable sets exist; nevertheless, the smallest is well defined. If X = {z,z,, ...z, }
is finite, the convex hull becomes {Zzl a; > =10, >0,Vi€ [m]}

2. Probability

A probability measure is described by (€, &, Pr), where (2 is the outcome space, F C 2 is the set
of measurable subsets of Q, and P : & — [0, 1] assigns probability to the sets in F. The three rules
for P are: it must be non-negative, it must assign measure one to {2, and it must be additive on
any collection of countably many disjoint sets in F. In this course, it is okay to think of F = 2%;
this is true, for example, for discrete outcomes. We will avoid measurability issues by assuming
that you know what expectation is.

Lemma 4 For any two real-valued random variables X,Y | E[X + Y] = E[X] + E[Y].

Recall that a collection of random variables {X;},_, is independent if Pr(X; € S5;), _, =
II,c; Pr(X; € S;). A weaker condition is pairwise independence, which only requires that for all
pairs X;, X, € {X;},_,, we have Pr(X; € 51, X, € §;) = Pr(X, € 5) Pr(X; € 5).

Recall that the variance of X is defined as V[X] = E[(X —E[X])?]. Using this, we observe that
for independent random variables X, Y, we have

VIX+Y]=E[(X —EX+Y —EY)?] =V[X] + V[Y] + 2E[X — EX|E[Y —EY] = V[X] + V[Y].
N —  —
=0
In fact, the additivity of variance, over any number of random variables, only requires pairwise
independence.
Ezercise. Prove that V[X] = E[X?] — (E[X])? = min, g E[(X —a)?] = %E[(X — X’)Z] , where X’
is an independent copy of X.

3. Approximate Caratheodory’s Theorem

In convex geometry, Caratheodory’s theorem states that, given a set of any size in R, any point
in its convex hull can be written as a convex combination of d + 1 points. Notice that there is
no dependence on the number of points in the original set. In two dimensions, you can convince



yourself that this is true by noting that any convex polygon can be perfectly decomposed into non-
overlapping triangles by connecting the vertices in the correct way; thus, any point in a convex
polygon lies in a triangle supported on the vertices of the polygon.

Such theorems are results about minimal representations: how many elements are needed to
represent any point from a rich set? We will prove another such result that uses far fewer points,
in fact, independent of the dimension, given a small slack.

Theorem 5 (Approximate Caratheodory's) Let X be a set in R? contained in the unit
ball B, = {z : |z, < 1}. For any £ > 0 and y in the convex hull of X, there exist k& points
21, ..., € X such that

Thus, if we are willing to tolerate € slack in how well x is approximated, 6% points suffice. In fact,
note that our convex combination is also special, being a simple average.

Proof. Since y is the convex hull, we know that y = 221 a;x; for some z,,z,,...x,, € X, where
a; > 0 sum to one. Consider a random variable Z; that picks x; with probability a; for all i € [m].

Notice that by definition E[Z;] = y. Consider Z,, ...Z,, additional independent copies of Z;. Now

1 g s 1 2 NS
E EZZi_?J = k—QZE“Zz_y”Q = E(E||Z1"2_||y||2) < L
i=1 9 i=1
2
Thus, there must exist some realization of Z;,...Z,, such that H% Zle Z; — y” < % O

2

3.1. Application: Choice Models

Human behavior is tricky and often inconsistent. Choice models study statistical models of the
same. For example, in the Plackett-Luce model, with a universe of n products, it is assumed that
a tester given items i and j will prefer i over j with probability w,/ (wl- + wj). Given a lot of such
empirical observations, the task is to recover the underlying quality w;, of the items.

Here, we consider a (nonparametric) model for ranking. Imagine a universe of n products, where it
is assumed that the testers are identical and randomly pick a ranking of all products, i.e., Pr(n) =
Z:i L @il , where we m;’s are all n! permutations. But instead of receiving direct observations

nxn

of many such stochastic rankings, we receive a summary statistic: a matrix Z € [0, 1] where

Z,; represents the fraction of times the product ¢ earned the rank j. Farias, Jagathabula and
Shah considered the following question: can we produce a choice model that explains the observed
matrix? Their main result is that a linearly sparse model is sufficient for this purpose. We will

recover this as an implication.

We begin with an application of Caratheodory’s theorem. A nonnegative matrix is said to be
doubly stochastic if row and column sums are one. Z is such a matrix. Each permutation 7 can



be written as a permutation matrix II € {0,1}"*™ where II;; if and only if the element ¢ occurs
in position j in 7. For example (2,4,3,1) can be encoded as

S O = O
o O O
o= OO
O O O

Notice that such matrices are also doubly stochastic, since there is exactly one 1 in each row and
column. A very fundamental result is as follows:

Theorem 6 (Birkhoff-von-Neumann) The convex hull of all permutation matrices is
precisely the set of doubly stochastic matrices.

By Caratheodory’s, any such Z can be written as the convex combination of (n—1)2+1
permutation matrices. Thus, any Z can be explained away with a distribution supported on just
(n —1)? + 1 matrices, an exponentially small fraction of the original n! parameters. Perhaps a
bound of n? 4+ 1 is easier. The precise number comes about by noting that the set of doubly
stochastic matrices is (n — 1)?-dimensional, given the (n — 1) x (n — 1) principal sub-matrix, one
can always reconstruct the last row and column due to the row and column sum constraints.

Using Approximate Caratheodory’s, we can guarantee that there exists a convex combination Z’

2
of n/e? permutation matrices such that |Z — Z’ | = \/E, senl? (Z — Z-’<) < e. The additional

©J iJ
n factor arises because a permutation matrix has Frobenius norm 4/n, and both sides of the
inequality in Approximate Caratheodory’s grow linearly with the scale.

4. Moment Generation Function

Given a random variable X, Wy, = E[e!¥] is defined to be its moment generating function. The
MGFs, upon their existence, encode all the moments and vise versa.

Proposition 7 L0y, [,_, = E[X*e!X]|,_o = E[X*].

dtk

Bernoulli Distribution. X ~ Be(p) is {0, 1}-valued with Pr(X = 1) = p.

\IJBe(p) (t) = (1 7p) +pet'

Rademacher Distribution. X ~ {+1} is {+1}-valued with Pr(X =1) = 1.
1 t2 t4 t2k: /2

— t —t\ — — ot?
\If{il}(t)—ﬁ(e +e )—1+2!+4!+...§1+§ s = ¢

k>1

Gaussian Distribution. Zsim N (u,0°) if Z =0X +p and X ~ N(0,1) where fy g q)(2) =

\/%76_1:2/2. Recall that T'(k) = fooo tF~le7tdt and T'(k + 1) < k*. Now, a few basic facts, where we

assume t, k > 1.



602t2/2

1 2
Uy(t)= —— [ et*® Py =
®) \/277/ V2
1 2 2 1 2
5 _ 3z?/8—x?/2 _ —z2/8 _
\Ilsg(l)——m/e dx——\/%/e de =2

1 e 1 > 2 1 2
Pr( X >t)= — e Pdr < — Te a2y = —— /2 (Mill's inequality)

V2r J, Ve, oot V2t

1 ) 25 k/2
E[|X[*] = \/? zke " 2dy = 2k 2e=2dy =
T

/ e~ (e1/2 gy — 1?2

['(k/2+1) < CpP/?
~2=22/2 I\/km 2Vkmw ( / ) P

5. Why high probability bounds? Why not CLT?

In the future, we will be interested in high-probability tail bounds, where the magnitude of the
random deviation scales as log1/d, instead of inverse polynomially in 1/§. This might be hard
to appreciate now, but ultimately, only bounds of the former sort will be useful to control the
maximum of a bunch of random variables, which is what we are ultimately building towards.

If X,...X,, ~N(0,1), then %2?21 z; ~ N(0,1), and hence Pr(% STy t) < e nt?/2,

n

Theorem 8 (Central Limit Theorem) Consider independent random variables X7, Xj...

with mean p and variance o2, then

ZL (X; — 1)
oy

that is, their density functions at any level t converge, as n — oo.

— N(0,1)

CLT says that, in principle, for sufficiently large n, appropriately normalized sums behave as if
each component is a Gaussian. The tail bound for a Gaussian decay exponentially. What stops
us from reducing everything to the Gaussian case? CLT is an asymptotic statement and does not
immediately imply anything for a finite number of samples. There is a way to repair this.

Theorem 9 (Berry-Essen) Consider independent random variables X, X,... with mean
p and variance o2, then for any ¢,

Pr (El%ﬁ—#) > t) —Pr(N(0,1) > t)| <

CE[|X — EX|?]
a3\/n '

But now, we get Pr(% ZL T, — > t) < e /2 4 %ﬁxlg], and thus, for the RHS to be at

most &, n > 1/62, ruling out a dependence of solely log1/4.



6. Subgaussian Random Variables

Theorem 10 (Markov's) For a nonnegative RV X, for any ¢ > 0,

Pr(X >t) > E[t—]

Proof. Observe X > X1y, > t1y.,. Take expectations on both sides and note E[1 4] = Pr(4). O

Exercise. One advantage of using indicator variables and expectations is that your proofs hold
as-is for both continuous and discrete random variables, in fact, for mixed ones too. Similarly use
indicate variables to prove that Pr(U{iej) Ai) < Do, Pr(4y).

Ezercise. Using indicator variables and expectations, prove, for any a nonnegative random variable

X, that E[X] = [* Pr(X > t)dt.

Theorem 11 (Chebyshev's) For a RV X with mean mu and variance o2, for any t > 0,

2

o
Pr(lX —pl > 1) < 5
Proof. Apply Markov’s starting from Pr(|X — p| > t) = Pr((X — p)? > t2). O

This implies that Pr(% Z:L: ) X, —p> t) < 7‘;—:2, but once again the number of samples is inverse
polynomial in 1/§. To get exponential tail bounds, we define a class of Gaussian-like random
variables that have a Gaussian-like tail. Notice that this similarity stops at the tail and does not
extend to the body of the distribution unlike CLT. Then, we will prove that this class of RVs is

suitably closed under interesting operations, such as averaging.
Definition 12 A random variable X is said to be o2-SubGaussian if ]E[et(X_]EX)] < e t?/2,

An important note of caution here is that o2, being defined in terms of the MGF, in general is
not equal to the variance of the SubGaussian distribution. Although this equality does hold for
the Gaussian and Rademacher families, in the broadest terms it is merely an upper bound on the
variance.

Lemma 13 (Hoeffding's) Any random variable with support in [a, b] is %—Sub(}aussian.

Proof. In fact, we will prove a weaker result, but using a technique that we will reuse in the future.
Ex[et(X—]EX)] < ]EX,X/ [et(X—X’)] = ]EX,X’EnN{:tl} [etn(X—X’)] < EX,X’ etQ(X—X/)2/2 < 6t2(b—a)2/2

Here, the first inequality introduces an independent copy of the random variable X’ and follows
due to Jensen’s, namely that f(EX) < Ef(X) for any convex function f. The only equality follows
by noting that X — X’ and X — X’ have the same distribution. The second inequality involves
the MGF of a Rademacher random variable. Overall, we have only proved the result to be (b — a)?



-SubGaussian, but we will use the idea of introducing Rademacher random variables later on, and
this is a good first introduction. O

Using this lemma, any bounded distribution, e.g. Bernoulli, is SubGaussian. Before we move on

to concentration inequalities, let us give alternative characterizations of SubGaussian random
variables.

Theorem 14 The following four conditions are equivalent, in the sense that all four constants
04,04,03,0, are within (universal) constant factors of one another.

1. E[et(X—]EX)] < ea%t2/2
2. Pr(|X —EX| > t) < 2¢ /293

3. (E[|X —EX|?])'/P < 03/p for all p > 1
4. E[eXEX/ed] <2

Proof. (1=2) We start with a union bound, and then apply Markov’s on the MGF. Because this
move is valid for any ¢ > 0, we choose the optimal ¢t = /0% by minimizing the quadratic.

Pr(|X —EX| >e) <2Pr(X —EX >¢) = 2min Pr(etX-EX) > ¢te)
< 2e max,sq{te—t203/2} _ 26_62/20%

(2=3) Recall the I' function and that I'(k 4+ 1) < k¥, and then substitute ¢t = (2a§z)p/2.

o0 o0
E|X —EX|P = / Pr(|X —EX|P > t)dt = 2/ e 71293 gy
0 0
o
= 21’/2“03/ e 2 2P/2 1 dy = 2P/2F1 60T (p/2)
0

(3=>4) Consider the power series expansion, where we use k! > (k/e)* and substitute o, = 21/ec.

_ 2k k
E[e(X—lEX)Q/aﬁ] :1+ZE[(X 2k]EX) ] < 1+Z (032k)k _ 1 .
k=1 oy k! =1 (03%) 1—2(03/04)"e

=2

(4=1) This is messy. First, by Taylor’s theorem, e < 1 + z + /| g—z Taking expectation on both
sides, we get

2
E[et(X—IEX)] <1+ %E[(X_EX>2et\X—]EX\]

2 22 2/ 2
<1+ %E[(X — EX)2e7it/2¢(X-EX)?/201] ot < 740 +2$ e
242
<1+ %e”ﬁﬁ/QE[e(X—EXV/"i] < (14 o3t?)eit*/? -2 < e2P/2

< 303t/ (14+z) <e”.



Two useful corollaries follow.

Corollary 14.1 If X, ~ SubGaussian(o?) and X, ~ SubGaussian(o3) are independent
random variables, then X; + X, ~ SubGaussian(o? + 03).

Proof. This follows from noting that for independent RVs X,Y, E[e!X+Y)] = E[e!X]|E[e!'] and
using the MGF characterization. O

Corollary 14.2 If X; ~ SubGaussian(o}), X, ~ SubGaussian(o3), then X;+ X, ~
SubGaussian((al + 02)2).

Proof. Using the moment characterization, for zero-mean random variables, we get
1 1 1
(EX: +2%,")" < EBIX )Y + EIXP) < (0 +02) VP,

where the first (triangle) inequality follows from the fact that |X|., = (E[|X \p])l/ P is a (semi)
norm. O

7. Concentration Inequalities for Linear Forms

Proposition 15 Let {X; ~ SubGauussian(orz)}?:1 be a collection of n independent random

%

variables. Then for any a € R™, t > 0, we have
Pr ( > X, —E [Z aiXi]
i=1 i—1

Proof. This follows from Z:‘z L@ Xy~ SubGaussian(Z?= ) a?o?), using the penultimate corollary.
([

&
> t) < 2¢ 2%iiaiol,

A common use case is that of averages, that is, when a, = 1/n.

Corollary 15.1 Let {X, ~ SubGaussian(ch)}L1 be a collection of n identically distributed
independent random variables. Then for any a € R™, ¢t > 0, we have

X

Thus, for any § > 0, with probability at least 1 — §, we have

& |20 log 2
ZXi_E[X]‘S 207085
=1 n

%zn:X—IE[X]

nt?
>t | <2 22,

1
n




The moment generating function was seemingly essential for this bound, but the specific choice
z — e*X might feel like an accident. Who is to say that we cannot do better? The following result
from the theory of large deviations provides some moral support.

Theorem 16 (Cramer) For any sequence of independent and identically sampled random
variables X, X,, ... with U(¢) = ]E[et(X_]EX)], we have for any ¢ > 0 that

1 1 &
lim —logPr| — X —EX > > — — log ¥ .
nl_)ngon og r(nz p > 5) > nta;g({ts og¥(t)}

=1

8. Maximal Inequalities

Lemma 17 Let {X; ~ SubGaussian(o?) }jzl be a collection of n zero-mean random variables.
Then, for any t > 0, we have that

E[m<aX|Xi]] < Co+/logn, and Pr(m<ax|Xi| > t) < 2ne 2.7,

Proof. The high probability bound follows from a union bound. We will try to prove

+2

Pr (max]Xi| > t) < ¢ 5%len
<n

2
If so, then E[max,_,|X;|] < fooo 2e so?iendt = C'oy/logn using the standard Gaussian integral. If
n < et’/40”, substituting this into the union bound suffices. In the other case, the RHS of the
needed inequality is at least one, which is a tautology. O

9. Looking Ahead: Nonlinear Functions

In a few weeks, we will revisit concentration inequalities and arrive at a meta-principle: as long
as Xj,...X,, are independent and f(Xj,...X,,) is not too sensitive in any of its arguments, we
have that

Pr(|f(X,,..X,) —Ef(X,,..X,)| >t) < et

Formulating this precisely, for different notions of sensitivities, will be both easy and difficult. At
least one rudimentary form will automatically follow from a Martingale version of the argument we
just developed. More sophisticated versions will link to deep mathematical ideas, like isoperimetric
and Poincare inequalities, which, for example, link variance to the expected size of the gradient
norm.

10. References

1. Primary reference: Chapters 0, 1 and 2 in Vershynin.
2. Alternative: Up to Section 1.4 in Rigollet and Hutter.



https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-2.pdf
https://arxiv.org/pdf/2310.19244

3. To appreciate measurability-related issues: Chapter 1 in Kantor, Matousek, Samal.

4. Concentration of Measure from the perspective of convex geometry: Naor.


https://bookstore.ams.org/stml-75
https://web.math.princeton.edu/~naor/homepage%20files/Concentration%20of%20Measure.pdf

47-837: Statistical Foundations of OR Lecture 2

Statistical Learning Theory

Lecturer: Karan Singh

Our goal in this lecture is to introduce Probably Approximate Correct (PAC) learning and build
up to the central result in learning theory, namely, that learnability for binary classification is
exactly characterized by the VC dimension of the underlying hypothesis class. We will see a couple
of applications of this result: the DKW inequality, and decision-theoretic learning of quantiles. At
the end, we will also pave an alternative path to learning that relies on generalization through
algorithmic stability.

But before we introduce the PAC framework, we pay our debt to concentration inequalities for
nonlinear functions, which will be essential in deriving the results promised earlier.
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1. Martingales

Concentration inequalities for nonlinear functions of independent variables boils down to concen-
tration of linear forms of dependent, but controlled random variables. We will make this concrete
in the next section. With this motivation, we introduce martingales to capture sequences of such
dependent random variables.

Definition 1 A sequence of random variables {X;} _ is a martingale if for all n, we have

IE[‘)(n-i-1| XnaXn—lv '~'7X1] = Xn



More generally, a sequence of random variables {Xi}¢> L forms a martingale with respect to
another sequence {Y;} _ if for all n, we have -

E[Xn+1| an,; Y;Lfla ,Yi] =S Xn?

where X, is measurable in (read as: completely determined given) Y}, ...Y, . The associated
sequence { X, ; — Xi}z‘>1 is called a martingale difference sequence.

As an example of martingale, consider prefix sums of independent zero-mean random variables,
for example, X,, =3, Y, where Y, ~ {£1} are independent, which model random walks in one
dimension. We can also have non-sum-like sequences, for example, X, ; = (1 +Y,_sin(X,,))X,,

where Y;’s remain as defined previously.

Historically, the term martingales originates from a certain class of French betting strategies; one
can still find people puzzled about these on Youtube. The setup is as follows: at any stage one
can bet any amount of choice on a fair random coin toss, receiving twice the initial amount upon
success, and nothing on failure. Clearly, there is no way to predict a fair coin toss, and hence, one
should not expect to make money in this circumstance. But consider the following strategy:

“Starting with a $1 bet in the first round, double the bet upon losing, and quit when you win.”

Since 2" —1 =142+ ... + 2", it is easy to observe that upon winning, one makes up all the
money lost in the previous rounds and gains an extra dollar, ending up in the green. Winning in
the long run happens almost surely, and hence, this specious argument seems to guarantee a small
profit. Of course, one might run out of money this way, but consider having an infinite purse.
Even then, we can observe that the return S,, at end of round n is distributed as

g _ 1 with probability 1 — 5
" —(2" — 1) with probability 5+

which on expectation is zero. In fact, S,, forms a martingale sequence. (Verify this!) The almost
surety of winning happens at the cost of cataclasmic losses with exponential small probability.

2. Bounded Differences Inequality

We generalize the subgaussian character of sums of independent random variables to martingales.

Lemma 2 If A, [X,.; = z,,; ~ SubGaussian(c?) for all 2, ; and j, and {A, } forms a mar-

tingale difference sequence with respect to {X,,}, then Z?: AR SubGaussian(Z?: ) 0?).
Proof. The proof follows by repeated applications of E[E[X|Y]] = E[X], while noting that A,.; is
measurable in X ;.



E et(ZL(Ai—EAi))] —Ey,_ [Ex [et(zll(Ai_EAi))\leﬂ]]
=Ex | [Exn [6t(An_EA")|X1:n_1] ot (0] (ArEAi))]

< 6_t2a%/2E {et(zyz_ll(Ai_EAi))} = .= et2 Yot

O

Our main result in this section is that any nonlinear function f with independent random variables
as arguments concentrates to its mean, as long as it can not changed a lot by tweaking a single
argument in isolation. One unfortunate aspect of this result, although it will suffice for us in this
lecture, is that the sensitivities to coordinates must be measured in a worst-case sense, that is, by
fixing the other coordinates to their worst configuration. Time permitting, in later lectures, we
will fix this and also extend the result to Lipschitz functions.

Theorem 3 (McDiarmid's Inequality) Consider a n-variate function f : X™ — R. Define

0;(21.) = rile%%(f(xl:wxa mi+1:n) - I;ély? f(331:ia y7mi+1:n)'

Then, for any ¢t > 0 and ¢; > ||§;]__ = max, 6;(21.,), we have that

2t2

Pr(|f(X,,..X,) —Ef(X,,..X,)| > t) <2 Tt

Proof. We begin by noting that f(X;.,) — Ef(X;.,) can be decomposed as

f(X10) —Ef(Xy,) = f(X1,) — Ex, [f( X)) [ X ] + Ex [f(X00) [ X ] — E[f (X))

E[f(X1:0) [ X 1] = E[f (X10)[ X4

=1

Clearly, A, :=E[f(X;.,)|X1.;] —E[f(X;.,)|X1.;_1] forms a martingale difference sequence with
respect to {X,, }, since A, is measurable in X, ., and

E[Aj+1|X1:j] = IEXj+1 [E [f(Xlzn)|X1:j+1” - E[f(le)|X1:j] =0.
It is plain to see that A, =By y [f(X1.,) = F(X1:m1, Yy Xip1:0) [ X1:] < ¢, and hence it is
subgaussian with variance proxy ¢?/4, by Hoeffding’s lemma. Thus we have fulfilled all the require-
ments of the previous lemma, and hence f(Xj.,,) is subgaussian with variance proxy (Z?z . cf) /4.
The tail bound immediately follows from this observation. O

2.1. Application: Max Cut

As our first example, consider the G(n,1/2) family of random graphs. This is a distribution over
all undirected (simple) graphs over n vertices where each pair of distinct vertices is connected by
an edge with probability 1/2, independently of the other pairs. We are interested in figuring out
the size of the maximum cut, that is, the the maximum number of edges that cross any partition
of the vertex set, with probability 0.99. Treating the presence of edges as independent Bernoulli



variables, any balanced cut, one with nearly equal number of vertices on both sides, has ”TZ X %
’I’L2

%= edges on expectation, and is subgaussian with variance proxy %2 xix(1—3)= ’f—;. Hence,
since there are 2™ possible cuts in total, a blind asplication of the maximal inequality gives the

= %2 + 0(n®?).

size of the maximum cut to be %2 + O( ”f—g log 2™

While the maximal inequality gives the correct expected size of the maxcut as %2 + Cn?/?  for some
universal constant C, using McDiarmid, we will see that the fluctuations due to randomness are
just £0(n) in size. To see this, think of the maximum cut as a function of (7)) indicator variables
of individual edges, which go up (or down) by at most one while adding (or removing) an edge,
that is ¢; = 1. As a consequence, we get the maximum cut lies in & + Cn®?2 £ O(n).

2.2. Application: Bin Packing

As a second example, consider n items of independent random sizes {X;} in the range [0, 1]. Let Y,
be the minimum number of unit-sized bins required to pack these, where we cannot split an item
between two bins. Imagine, for example, X, ~ Unif[0, 1], in which case E[Y, ] > |—Z:’L=1 X,L--| =n/2.
Again, Y, can go up (or down) by at most one by increasing (or decreasing) the size of a single
item. Hence, Y, lies in E[Y,] + O(y/n) with probability 0.99. Thus, although ¥, on any specific
day involves a NP-hard problem, over provisioning boxes by a vanishingly small fraction fulfills
the demand with high probability on any day without knowledge of the realized item sizes.

3. PAC Learning

Let us first concretely define the learning task. We will imagine that there is a feature space X

and label space ¥, and on top of this is a data-generating distribution D supported on X x Y. A

loss function [ : Y2 — R assigns a loss to the prediction § € ¥ when the correct label is y as 1(7, y).

In this lecture, we will deal with binary classification, where ¥ = {0,1} and I(§,y) = 1;,, often

termed the zero-one loss. Given this, we can define the population error of any classifier h to be
ertp(h) = By yonli(hiz)p)] = Pr_(h(z) #9).

)~

Our first result is a negative one. Note that a random classifier has an error of 1/2. In words,
the proposition states that no learning algorithm can have a significantly better error without
observing a constant fraction of all the data points, even if a perfect classifier exists. If X = {0, 1}¢,
this sample requirement for nontrivial error scales as 2¢.

Note that if the latter requirement of a perfect classifier is dropped, then we can take D to be the
uniform distribution on X augmented with Pr(Y = 1|X = z) ~ Be(1/2) for all x € X', for which
even the best classifier can do no better than half on error. But this is a setting in which knowing
D beforehand confers no advantage; hence, this does not capture a failure of learnability.

Proposition 4 (No Free Lunch) Consider any finite X', and any learning algorithm
that upon observing m samples produces a classifier h 4. Then, there exists a distribution 2
supported on X' x {0,1} such that Elerry(h 4)] > %(1 — %) while min . 1)x errp (f*) = 0.



Proof. Our proof essentially works via Yao’s minimax lemma, although we will not call it by
name. Instead of constructing a single distribution, we construct a distribution of distributions &
as follows. For any y € {0,1}*, let D, be the distribution with uniform distribution on X', where
each z € X has a deterministic label y(x). Clearly, vy itself is perfect classifier for D,. Let F be a
uniform distribution over {’.Dy cy €{0,1}* } Now, we observe for any algorithm A that

ax Egnm e h >TE Eeon e h
ygﬁ)f}x S NDy[ ery( /l)] 2 Ly ~glls N@y[ ery( A)]

[ 1
= Exonunitr) Ey~uni(0,11%) [kl Z;C 1hﬂ<m>¢y<z)]
L xe

1
2 Boxom unit(a) By~ unit({0,1)7) Ka] ;X 1hﬂ<x>¢y<z>]
L zelX—-Xm

1

=Egm m Z EyNUnif({o,l})1hﬂ(m)%y(x)
rzeX—-Xm

X —m
>—7
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where in the first equality, we use a double sampling argument, namely that sampling y uniformly
randomly and then choosing m samples from 2, can also be seen as sampling m feature vectors
from the uniform distribution over X' and them choosing y uniformly randomly. In the second
equality, we use the fact that since components of y are independent, even conditioned on S™,
y(z) is a uniformly random binary label for all x ¢ X™, on which any predict rule makes error
with probability 1/2. Finally, we note that due to sampling with replacement, X™ captures at
most m distinct elements from X . O

In the face of this impossibility, there can be two responses. The more obvious of these develop-
ments is to limit the class of distributions under consideration, so 2 can no longer be arbitrary.
One can hope that for nice and natural distributions such impossibilities do not arise. For a long
as time, this was the only approach to learning, as embodied in classical (especially parametric)
statistics. In this vein, one assumes that the true data-generating distribution 2* belongs to some
known class {2, ...D,}, finite here for simplicity of illustration. As more samples are gathered
from 2D*, one can identify the true distribution, at least in a functional sense. A severe disadvantage
with this approach is that if 2* happens to lie outside our considered class, it is unclear how
a learning algorithm of this sort performs, or if it converges, or if it does, does the convergent
distribution yield a reasonable classifier for the true distribution.

The other recourse, and perhaps the defining choice in learning theory, is to redefine the notion of
success and seek a different sort of learning guarantee. Instead of limiting 2*, we choose a limited
hypothesis class K = {hy,...h,, }. Instead of succeeding in absolute terms, success of an (agnostic)
learning algorithm lies in ensuring that the classifier it produces is almost as good as the best
hypothesis in J. The advantage is immediate: by choosing H to be the set of Bayes-optimal
classifiers for {D,, ...D, }, one can ensure that the classifier produced is as good as the best classifier
for the true data-generating distribution D*, if D* lies in the aforementioned set, thus recovering
the classical statistical guarantee. On the other hand, robustness to the latter assumption is built
in, insofar that, even if all our models of D* were wrong, we still retain performance as good as
the best hypothesis in J; thus this approach degrades the right way against mis-specification.



This way of thinking in terms of a relative error guarantee is something even experts in other
(classical) fields find hard to accept — although the acceptance is growing by the day — perhaps
because hypothesis classes embody solution concepts and do not produce an explicit mechanistic
description of how the data was generated. But to the extent one cares about minimizing the loss,
this approach cannot be beat.

We begin with the definition of realizable PAC learning that makes the above setting concrete,
but also does not quite deliver on what was promised. The realizability assumption here is that
there exists a perfect classifier in the hypothesis class H, or in other words, the learning guarantee
only extends distributions 2 for which this condition holds.

Definition 5 A hypothesis class H C Y is realizable PAC learnable if there exists a sample
complexity m : (0,1)? — N and a learning algorithm A, which for any ¢, § > 0 and distribution
D supported on X x Y, upon taking m(e,d) samples produces a classifier h 4, : X — {0,1}
such that with probability at least 1 — §, we have

errp(hg) <e,

as long as there exists an h* € H such that err,(h*) = 0.

The more general model, but one which is also computationally challenging, is agnostic PAC
learning, which forgoes the realizability assumption, and gives a relative error guarantee, instead
of an absolute one. The sample requirement here is also generally higher, as we will see.

Definition 6 A hypothesis class F C Y% is agnostic PAC learnable if there exists a sample
complexity m : (0,1)?> — N and a learning algorithm A, which for any &, § > 0 and distribution
D supported on X x Y, upon taking m(e,d) samples produces a classifier h 4 : X — {0, 1}
such that with probability at least 1 — §, we have

errp(hy) < ’{IIGI% errp(h*) + €.

4. Finite Classes

As a warm-up, in this section, we consider the task of learning finite classes . Along the way,
we will develop the framework of learning infinite class (not all of are learnable!), which is our
ultimate goal. For any m-sized sample set S C X x Y, let errg(h) = %221 l(h(z;),y;) be the
empirical error of the hypothesis h. We begin with realizable learning.

Theorem 7 Any finite hypothesis class H is realizable PAC learnable with

log(|7/9)

m(e, 6) = o(

) samples.

Proof.  Certifying PAC learnability requires specifying a learning algorithm. We choose the
most obvious one, namely, pick h , € F arbitrarily as long as errg(h 4) = 0. Due to realizability,



generically, such a choice always exists, else our claim is vacuous. What does failure to learn mean?
Define Hp,q = {h € K : errp(h) > }. Now, failure is synonymous with h 4 in Hp,4, which only
happens if there is a hypothesis h in Hp,, with errg(h) = 0. Now fix any h € Hp,q. We have

Pr(errg(h) = 0) = | [ Pr(h(z;) = ;) = (1— o)™,

=1

Pr(errp(hy)) < ) Pr(errg(h) = 0) = |Hpa|(1 — €)™ < [F]e™,
heHp.q

where we use the inequality 1 + z < e® for all z, concluding the claim. O

For the agnostic case, we introduce the concept of uniform convergence, which requires that with
enough samples, the maximum difference between the population error and the sample error across
all hypothesis in the class can be made arbitrarily small. This means that the performance on the
sample set transfers to the population. We will reuse this notion for infinite hypothesis classes.

Definition 8 A hypothesis class F C Y* exhibits uniform convergence with sample
complexity myc : (0,1)2 — N if, for any &,6 > 0, upon taking myc(e,d) samples from any
distribution D, supported over X x ¥, to form S, we have with probability at least 1 — ¢ that

h) — h)| <e.
maxlerry (h) — errg(h)] < &

We will now see that uniform convergence immediately implies agnostic PAC learnability.

Theorem 9 If a hypothesis class # exhibits uniform convergence, then it is agnostic PAC
learnable with sample complexity m(e,d) = myc(5,9)

Proof. Again, we start with the learning algorithm, which picks h , € argmin, 4 errg(h) arbi-
trarily. Let h* € argmin,, 4 errp(h). By uniform convergence, with probability 1 — §, we have

errp(hy) <errg(h,) +e <errg(h*) + e < errp(h*) + 2¢,
completing the proof. O

While in general uniform convergence arguments require some care, for finite classes, uniform
convergence follows essentially by a union bound.

Theorem 10 Any finite hypothesis class H exhibits uniform convergence with

log|H|/d
og|€—2|/> samples.

myg(e, 6) = O(

Proof. Since Egerrg(h) = erry(h) for any fixed hypothesis h, we observe that

—2ne?
Pr(r}ga})[c\errﬂ(h) —errg(h)| > E) < };{Prﬂerr@(h) —errg(h)| >¢) < 2|Hle ,



where the last inequality follows from the tail bound for averages from the last lecture. O

Combining the previous two results, we get the following corollary concerning the agnostic learning
of finite hypothesis classes.

Corollary 10.1 Any finite hypothesis class # is agnostic PAC learnable with

log(|71/9)
g2

m(e,d) = O( ) samples.

5. VC Dimension

Now, we are ready to extend learnability to infinite hypothesis classes. Not all hypothesis classes
are learnable. Hence, a key question is to find out when learning is possible for infinite classes, by
coming up with an appropriate notion of size for hypothesis classes.

Definition 11 For C = {z,...z,,} C X of finite size and hypothesis class & C {0,1}*, let
He = {(h(zq),...h(z,,)) : h € H}

be the set of labelings # induces on C. The VC dimension VC(X) of a hypothesis class F
is the size of the largest set with |H| = 2/l in other words, where all possible labelings are
realized by .

To state this explicitly, to establish that VC(H') = d for a class ', we must establish that there
exists at least one set C of size d where all possible labelings of C are realized, thus, the VC
dimension is at least d, and further that all larger sets have at least one unrealizable labeling,
implying the VC dimension is strictly less than d + 1.

Let us look at a few examples.

1. For X =R, H = {1,., : a € R} has VC dimension one. Clearly, on C = {0}, this class real-
izes a positive label by choose a = 1 and a negative label by choosing a = —1. Furthermore,

rx<a

for any two point set C' = {a, b} where a < b generically, a negative label on a and a positive
esa i@ ER}) =1

2. Take X = R. The VC dimension of H = {1,_,, :a,b € R} is two. It is easy to see that
there exists a two-point set, e.g., {0,1}, where all possible labelings are realized. For any

label on b are not realizable simultaneously. Similarly, VC({1

three-point set {a, b, c} with a < b < ¢, a negative label in the middle and positive labels at
extremities is unrealizable.

3. Take X = R2. The VC dimension of all (closed) axis-aligned rectangles is four. Note that
not all four point sets, e.g., {(0,0),(0,1),(1,0),(1,1)}, can be assigned arbitrary labelings,
but that’s okay, because we just need to show one four-point set that can be labeled in all
possible ways. Such a set exists, e.g., {(1,0),(0,1),(—1,0), (0,—1)}. Arguing that every five-
point set has an unrealizable labeling is trickier. The cleanest argument here is that the
smallest axis-aligned rectangle containing any five-point set is also the smallest axis-aligned



rectangle for some four-point subset of the original set. Hence, the point in the “middle” can
not be assigned a label independently of the other four.

6. Learning VC Classes

At this point, it might not be obvious why VC dimension is the correct notion of size for learning.
The theorem on sufficiency will shed some light on this, but far more obvious is the fact that finite
VC dimension is necessary for learning.

Corollary 4.1 For any hypothesis class A with infinite VC dimension, and learning
algorithm A that produces the classifier h 4 after seeing m samples, for any € > 0, there exists
a distribution D such that Elerry(h )] > 5 — € and min, 4 erry(h) = 0. Thus, a finite VC
dimension is necessary for realizable (and hence also agnostic) PAC learning.

Proof. Since the VC dimension of & is unbounded, we can find arbitrarily large subsets C of X
on which J can realize all possible labelings. We apply Proposition 4 to such a set of size m/e. O

In fact, from a quick examination of the proof of Proposition 4, we can also see that the sample
complexity of realizable and agnostic learning must scale as Q(VC(X)), although the argument
does not by itself imply a correct, that is, tight, bound on other parameters.

Now, we will prove that a finite VC dimension is sufficient for learning. We will focus on the
agnostic case, which also implies realizable learnability. In fact, we will prove a near-optimal sample
complexity bound for agnostic PAC learning. This proof is interesting to the extent that it will
involve all little probabilistic tools that we have developed so far, ranging from symmetrization to
maximal inequalities and McDiarmid’s inequality.

Theorem 12 Any hypothesis class K with a finite VC dimension d exhibits uniform
convergence with sample complexity

d+logl/é
mUC(vS, 5) =0 <€—2/) a
Proof. In fact, we will prove a bound of O((dlogd/e +1log1/§)/e?) on the sample complexity,
which is worse by logarithmic factors, because proving the tight bound, although very much in
reach of the present course, is slightly painful.

Fix any hypothesis class H with VC dimension d, and a random sample set S of size m drawn from
D. Notice that S+ maxy,c g |erry(h) —errg(h)| goes up (or down) by at most one on changing a
sample. Hence, by Theorem 3, we get that

— — _ > < —2mt2‘
Pr(‘gle%cerr@(h) errg(h)| —Eg Iglea})[derrg(h) errs(h)|] > tD < 2e

To make the right side at most &, m needs to be at least log(2/d)/e?. This explains the second
term in the sample complexity.



Lemma 13 For a sample set of size m and a class of VC dimension d, we have that

dlog?2m
Eg [I}gjm}}[derrﬂ(h) — errs(h)|] <0 (\ / T) .

To conclude the claim and note the necessity of the first term in the sample complexity, we use
the maximal inequality above that specifically deals with VC classes. O

Proof of Lemma 13. On the face of it, Lemma 13 looks exactly like the standard maximal
inequality. After all, errg(h) — errp(h) for any fixed h is exactly zero-mean and, being an average
over m independent samples, subgaussian with variance proxy 1/m. The catch is that the standard
maximal inequality scales here as y/log|# |, which is just a fancy way of recovering our finite
hypothesis results. With some manipulation, we will show the effective size of H, one that matters
here anyway, is O(md), using the lemma below.

Lemma 14 (Sauer-Shelah-Perles Lemma) For any hypothesis class A with VC dimen-
sion d and a set C of size m on the same feature space, we have that

d
m
el < Z( k )
k=0
In particular, if m is at least d, then |H| < O(m?).
The main trick is to use symmetrization. Observe the following sequence of inequalities.
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Here (1) introduces S’ as m samples, chosen independently from S, and (2) follows from Jensen’s
inequality, while noting that = - |z| is a convex function, and taking a maximum over a family of
functions preserves convexity. Step (3) follows from noting that for any S, S” exchanging the corre-
sponding samples between these at any index ¢ results in a new pair of sets that are equiprobable.
The key step is (4), where we narrow K to Hg g, since the quantity being maximized only
depends on the samples via the signs realized by H on the same set. Step (5) follows by the
standard maximal inequality, having fixed S, S’. In step (6), we apply Lemma 14.

Thus, we have the desired claim. But it is worth taking a moment to appreciate why all the
machinations above were needed. Clearly, replacing the population error by the sample error on
newly sampled points was instrumental in ultimately narrowing # to Hg g/, by saying that only
the signs realized on some 2m points matter. But, one might also be tempted to directly use the
maximal inequality at the end of step (2), without introducing Rademacher random variables.
This idea fails. While even at the end of step (2) we could have narrowed K to Hg g, now the
index set being maximized over is stochastic, while an implicit promise in the maximal inequality
is that the index set is deterministic, or at lease independent of other sources on randomness. Had
we conditioned on S, S’ at this stage, that would have fixed the stochastic index set, but made
the remaining quantity deterministic too, losing the subgaussian character. O

Before proving Lemma 14, let us take a second to review its implication. It says for any class with
bounded VC dimension, the number of labelings grows polynomially in the size of the set. If on
the other hand, the VC dimension is infinite, then, by definition, there are sets of any needed
size where the number of labelings are exponentially many. The lemma rules out all possibilities
in the middle, that is, those associated with a superpolynomial but subexponential growth for
all sets simultaneously. This is also why VC dimension sharply characterizes learnability. Each
class is either learnable, to a nontrivial degree, with a constant number of samples, or unlearnable
altogether. There is no in-between.

Proof of Lemma 14. The proof proceeds by induction on m + d. The base cases can be verified
separately. Fix a hypothesis class Z with VC dimension d and a set C = {z4,...z,,,} CX. Let
C'=C—{zy}and H' ={heH :30 € H,h'(x;) =1— h(z,)}. Now, we claim that

[ Hel = [Her |+ [Her |-

In words, all labelings of C” have either a unique extension to C' under J, in which case they are
counted in the first term, or admit two extensions, with both + signs on z;, to C, in which case
they are accounted for once in the first term and again in the second term.

Let us construct another hypothesis class " which is the same as H” except that z; is not in
its domain. (If this makes you uneasy, it is also fine to assign all of " an arbitrary label on
x;.) Since C’ does not contain z;, K¢ and Hs are identical. Further, we claim that the VC
dimension of H” is at most d — 1, because if all labelings of a set D are attained by A", then H
attains all labelings on C' U {z; }. We then apply the inductive hypothesis on H, and H to get

d—1

st 3 (")) = () () () = 50

d
k=0 k=0



where we use the identity that (') = (/") + (’;:11) The following display completes the final

) () (0 2) = ()

0

clause, as long as m > d.

d
m
Heol < | =
91 < ()

Using Theorem 9, uniform convergence of finite VC classes implies agnostic PAC learnability.

Corollary 14.1 Any hypothesis class # with a finite VC dimension d is agnostic PAC
learnable with sample complexity

(5,4 = O(M)

g2

Finally, we remark the sample complexity derived above can be improved to scale as 1/¢ in the
realizable case. The proof of this result utilizes a nice double sampling argument.

6.1. Application: DKW Inequality

Consider the task of estimating the CDF F' of a continuous real-valued random variable given m
independent samples. A natural choice of the estimator is

Using subgaussian tail bounds, for any fixed ¢, Pr(|F(t) —F@) > t) < 2¢72m" The Dvoeretzky-
Keifer-Wolfowitz inequality says the same bound holds uniformly, without needing a union bound.

Theorem 15 (DKW Inequality) Pr(supt6R|F(t) —F@t)| > t) < Qe—2mi

The proof is a simple application of Theorem 12 — this is after all a statement about uniform
convergence — if one were willing to ignore the precise constants, since the VC dimension of the
indicator variables of {(—o0,a] : a € R} is one. In terms of history, the DKW inequality predates
VC theory by a good couple of decades.

6.2. Application: Learning Quantiles

Consider an inventory replenishment problem for nondurable goods, typically termed the newsven-
dor problem. At the end of each day, a store owner owners orders a goods to delivered the next
morning. The stochastic demand X € [0, 1] is realized the next day. The resultant loss is

(X, a) = plX —al, + (1 = p)la — X],,

which imposes unequal penalties for over and under meeting the demand. Here [X —a|T =
max{X — a,0}. We are interested in pick an action that minimizes the expected cost Ex[I(X,a)].

Since a - (X, a) is convex, the subgradient is



LB 0X,0)] = Ex[p1 o0 — (1 p)1xca] = pPE(X > 0) — (1 p) Pr(X < a),

and hence the optimal choice a is the bottom p-quantile of D.

What can we do if 2 is unknown and instead we observe m samples from D7 By the DKW
inequality, we can choose @ to be the bottom p-quantile of observed samples, and guarantee that
F(a) = p 4+ O(1/y/m) with probability 0.99. An exercise in integration by parts gives (Verify!)

a

Ex[l(X,a)] = p/ Pr(X > z)dz + (1 — p)/ Pr(X < z)dz.

-1
Now, we can see how good a is by observing

EAIX, )~ Exli(X,a)) = [ (p— F(o)do < 0(%)

7. Algorithmic Stability

The plan here was to carve an alternative path to generalization and learning via (uniform)
stability of the learning algorithm. Instead of focusing on the characteristics of the hypothesis
class, this is an algorithm-centric approach. Being short on time, we will instead consider a simple
example that deals with Leave-One-Out (LOO) stability and proves generalization in expectation.

Definition 16 The Leave-One-Out (LOO) stability A(A4, S™%!) of a learning algorithm A

with respect to a sample S = {(z;,y;)} of size m + 1 is defined as

i€[m+1]
m+1
M) = —= 3 (Uha, @, 5) — Uha(),9),
=1

where the algorithm A receives S™T! as its input and A, receives all samples but (z;,y;)-

The following is a funny sort of in-expectation generalization guarantee that compares the
population error of an algorithm that is given m samples to the in-sample error on m + 1 samples,
instead of m as one would expect. Nevertheless, this will suffice for our application. In fact, for
reasonable learning algorithms, for example, if one chooses a hypothesis with the smallest error
on training data, this upper bounds the usual generalization error in expectation, up to a small

1/m additive term (Verify this!).

Theorem 17 For any distribution 2D, we have that
Egmlerry(h 4 )] = Egm [errgmsi (hy)] + Egmsr [A(A, Sm+1)]’

where A’ and A receive S™ and S™*! as their inputs, respectively.

Proof. The proof is a simple consequence of the definition.



m+1 m+1

Egme [A(A, S™H)] = — Z Egme [[(ha, (2:), ;)] — Egmes mLH ; I(h 4(z;), ;)

1 m+1

= Z EsnBpynpllihg (2),y)] = Egma[errgm (hy)]

=Egmlerrp(h g)] — Egmi[errgm (b 4)]
O

As an application, consider the task of learning d-dimensional axis-aligned rectangles in the real-
izable case. Our learning algorithm in this case simply outputs the smallest axis-aligned rectangle
containing all positive examples. The empirical error given any number of samples is zero. We will
soon see that the worst-case LOO stability over any m + 1 example is at most 2d . Hence, this
algorithm given m samples has a population error of at most =% +1, matching the sample complexity
of O(d/e) we would get from the VC approach. To see this bound on the LOO stability, note that
the smallest rectangle is supported by at least one sample on every one of its 2d facets, and a
facet shifts only if all samples supporting it are deleted, and thus, A, and A are identical on all
except at most 4 indices.
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47-837: Statistical Foundations of OR Lecture 0

Assignment 1

Lecturer: Karan Singh

1. Lower Bounds on Approximate Caratheodory (10 points)

We will show that the Approximate Caratheory’s theorem can not be improved in high dimensions.
For any dimension d, construct a set X C R¢ contained in B, = {z : |z|, < 1} and a point y in
the convex hull of X so that for all £ we have

) . - S 1 1
min min y— E T, = - — .
{z{,..z,}eX ;20 — v k d
N =
2 =1 2

2. Pairwise Independence (10 points)

The purpose of this exercise is to demonstrate a specific sense in which pairwise independence
is a much weaker condition than full independence. Concretely, given access to n independent
Rademacher variables, provide a deterministic recipe to construct at least e pairwise independent
Rademacher variables for any ¢ > 0 of your choice.

3. Random MaxCut (10 points)

Consider a random graph on n vertices where each pair of vertices has a edge with probability
1/2, independently of other pairs. Every subset of vertices is associated with a cut, namely, edges
with exactly one endpoint in a subset; the size of the cut is the number of such edges. Prove that
with probability at least 0.999, the maximum cut of such a graph is within f(n) £+ g(n). Try to
find the best such f(n) and g(n), but do not worry about the leading constant in g(n).

4. VC Dimension Examples (10 points)

Calculate the VC dimensions of:
1. The set of halfspaces (i.e., 1,7, p>0.0crn per) N n-dimensions

2. The set of n-dimensional spheres.
Lastly, prove for any #; and F, defined over the same feature space that

VC(H, U H,) < VC(H,) + VCI,) + 1.

Hint: Radon’s theorem can be useful for the first part.



5. Sparse Predictors (10 points)

Consider X =R"™, and H;, = {17,450 : @ € R",b € R, |ally < k} be the class of linear predictors
that depend on at most k coordinates. Prove that:

1. VC(H,) is at least Q(logn).
2. VC(H,) is at most O(klog %).

6. Learning by Asking is Faster (10 points)

The point of this exercise to show that if you are allowed to ask for the correct labels for points of
your choice, you can learn with far less labeling/supervision. Concretely, construct a hypothesis
class  C {0,1}%1 such that both conditions below are satisfied simultaneously:

o H is (realizable) PAC learnable with sample complexity Q(log(1/d)/e).

o Consider a model where the learner can (A) query the correct label for any given feature
vector, and (B) additionally draw an infinite number of samples from the marginal distrib-
ution of 2 on the feature space (without labels). It must be that, for any distribution D, as
long as erry(h) = 0 for some h € H, a learning algorithm can make O(log(1/¢)) such queries
to produce a h , € H such that errp(h ) < e.



